Package: datacutr 0.2.0

Tim Barnett

datacutr: SDTM Datacut

Supports the process of applying a cut to Standard Data Tabulation Model (SDTM), as part of the analysis of specific points in time of the data, normally as part of investigation into clinical trials. The functions support different approaches of cutting to the different domains of SDTM normally observed.

Authors:Tim Barnett [cph, aut, cre], Nathan Rees [aut], Alana Harris [aut], Cara Andrews [aut]

datacutr_0.2.0.tar.gz
datacutr_0.2.0.zip(r-4.5)datacutr_0.2.0.zip(r-4.4)datacutr_0.2.0.zip(r-4.3)
datacutr_0.2.0.tgz(r-4.4-any)datacutr_0.2.0.tgz(r-4.3-any)
datacutr_0.2.0.tar.gz(r-4.5-noble)datacutr_0.2.0.tar.gz(r-4.4-noble)
datacutr_0.2.0.tgz(r-4.4-emscripten)datacutr_0.2.0.tgz(r-4.3-emscripten)
datacutr.pdf |datacutr.html
datacutr/json (API)
NEWS

# Install 'datacutr' in R:
install.packages('datacutr', repos = c('https://pharmaverse.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/pharmaverse/datacutr/issues

Datasets:

On CRAN:

6.90 score 13 stars 11 scripts 211 downloads 10 exports 49 dependencies

Last updated 2 days agofrom:d6332bed42. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 21 2024
R-4.5-winOKNov 21 2024
R-4.5-linuxOKNov 21 2024
R-4.4-winOKNov 21 2024
R-4.4-macOKNov 21 2024
R-4.3-winOKNov 21 2024
R-4.3-macOKNov 21 2024

Exports:apply_cutcreate_dcutdate_cutdrop_temp_varsimpute_dcutdtcimpute_sdtmprocess_cutpt_cutread_outspecial_dm_cut

Dependencies:admiraldevassertthatbase64encbslibcachemclicpp11digestdplyrevaluatefansifastmapfontawesomefsgenericsgluehighrhtmltoolshtmlwidgetsjquerylibjsonliteknitrlifecyclelubridatemagrittrmemoisemimepillarpkgconfigpurrrR6rappdirsreactablereactRrlangrmarkdownsassstringistringrtibbletidyrtidyselecttimechangetinytexutf8vctrswithrxfunyaml

Applying a Variable Date Cut

Rendered fromvariable_cut.Rmdusingknitr::rmarkdownon Nov 21 2024.

Last update: 2024-10-30
Started: 2023-03-22

Contribution to {datacutr}

Rendered fromcontribution_model.Rmdusingknitr::rmarkdownon Nov 21 2024.

Last update: 2023-03-22
Started: 2023-03-22

Example Modular Approach

Rendered fromexamplemodular.Rmdusingknitr::rmarkdownon Nov 21 2024.

Last update: 2024-10-30
Started: 2023-03-22

Example Wrapped Approach

Rendered fromexamplewrapped.Rmdusingknitr::rmarkdownon Nov 21 2024.

Last update: 2024-10-30
Started: 2023-03-22

Get Started

Rendered fromdatacutr.Rmdusingknitr::rmarkdownon Nov 21 2024.

Last update: 2024-10-30
Started: 2023-03-22

Modular Approach

Rendered frommodular.Rmdusingknitr::rmarkdownon Nov 21 2024.

Last update: 2024-10-30
Started: 2023-03-22

Wrapped Approach

Rendered fromwrapper.Rmdusingknitr::rmarkdownon Nov 21 2024.

Last update: 2024-10-30
Started: 2023-03-22