Package: datacutr 0.2.3

Tim Barnett

datacutr: SDTM Datacut

Supports the process of applying a cut to Standard Data Tabulation Model (SDTM), as part of the analysis of specific points in time of the data, normally as part of investigation into clinical trials. The functions support different approaches of cutting to the different domains of SDTM normally observed.

Authors:Tim Barnett [cph, aut, cre], Nathan Rees [aut], Alana Harris [aut], Cara Andrews [aut]

datacutr_0.2.3.tar.gz
datacutr_0.2.3.zip(r-4.5)datacutr_0.2.3.zip(r-4.4)datacutr_0.2.3.zip(r-4.3)
datacutr_0.2.3.tgz(r-4.5-any)datacutr_0.2.3.tgz(r-4.4-any)datacutr_0.2.3.tgz(r-4.3-any)
datacutr_0.2.3.tar.gz(r-4.5-noble)datacutr_0.2.3.tar.gz(r-4.4-noble)
datacutr_0.2.3.tgz(r-4.4-emscripten)datacutr_0.2.3.tgz(r-4.3-emscripten)
datacutr.pdf |datacutr.html
datacutr/json (API)
NEWS

# Install 'datacutr' in R:
install.packages('datacutr', repos = c('https://pharmaverse.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/pharmaverse/datacutr/issues

Pkgdown site:https://pharmaverse.github.io

Datasets:

On CRAN:

Conda:

7.48 score 14 stars 11 scripts 652 downloads 10 exports 49 dependencies

Last updated 1 months agofrom:0684a2bf01. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 05 2025
R-4.5-winOKMar 05 2025
R-4.5-macOKMar 05 2025
R-4.5-linuxOKMar 05 2025
R-4.4-winOKMar 05 2025
R-4.4-macOKMar 05 2025
R-4.4-linuxOKMar 05 2025
R-4.3-winOKMar 05 2025
R-4.3-macOKMar 05 2025

Exports:apply_cutcreate_dcutdate_cutdrop_temp_varsimpute_dcutdtcimpute_sdtmprocess_cutpt_cutread_outspecial_dm_cut

Dependencies:admiraldevassertthatbase64encbslibcachemclicpp11digestdplyrevaluatefansifastmapfontawesomefsgenericsgluehighrhtmltoolshtmlwidgetsjquerylibjsonliteknitrlifecyclelubridatemagrittrmemoisemimepillarpkgconfigpurrrR6rappdirsreactablereactRrlangrmarkdownsassstringistringrtibbletidyrtidyselecttimechangetinytexutf8vctrswithrxfunyaml

Applying a Variable Date Cut

Rendered fromvariable_cut.Rmdusingknitr::rmarkdownon Mar 05 2025.

Last update: 2024-10-30
Started: 2023-03-22

Contribution to {datacutr}

Rendered fromcontribution_model.Rmdusingknitr::rmarkdownon Mar 05 2025.

Last update: 2023-03-22
Started: 2023-03-22

Example Modular Approach

Rendered fromexamplemodular.Rmdusingknitr::rmarkdownon Mar 05 2025.

Last update: 2024-10-30
Started: 2023-03-22

Example Wrapped Approach

Rendered fromexamplewrapped.Rmdusingknitr::rmarkdownon Mar 05 2025.

Last update: 2024-10-30
Started: 2023-03-22

Get Started

Rendered fromdatacutr.Rmdusingknitr::rmarkdownon Mar 05 2025.

Last update: 2024-10-30
Started: 2023-03-22

Modular Approach

Rendered frommodular.Rmdusingknitr::rmarkdownon Mar 05 2025.

Last update: 2024-10-30
Started: 2023-03-22

Wrapped Approach

Rendered fromwrapper.Rmdusingknitr::rmarkdownon Mar 05 2025.

Last update: 2024-10-30
Started: 2023-03-22