Title: | SDTM Datacut |
---|---|
Description: | Supports the process of applying a cut to Standard Data Tabulation Model (SDTM), as part of the analysis of specific points in time of the data, normally as part of investigation into clinical trials. The functions support different approaches of cutting to the different domains of SDTM normally observed. |
Authors: | Tim Barnett [cph, aut, cre], Nathan Rees [aut], Alana Harris [aut], Cara Andrews [aut] |
Maintainer: | Tim Barnett <[email protected]> |
License: | Apache License (>= 2) |
Version: | 0.2.0 |
Built: | 2024-11-21 06:23:25 UTC |
Source: | https://github.com/pharmaverse/datacutr |
Removes any records where the datacut flagging variable, usually called DCUT_TEMP_REMOVE, is marked as "Y". Also, sets the death related variables in DM (DTHDTC and DTHFL) to missing if the death after datacut flagging variable, usually called DCUT_TEMP_DTHCHANGE, is marked as "Y".
apply_cut(dsin, dcutvar, dthchangevar)
apply_cut(dsin, dcutvar, dthchangevar)
dsin |
Name of input dataframe |
dcutvar |
Name of datacut flagging variable created by |
dthchangevar |
Name of death after datacut flagging variable created by |
Returns the input dataframe, excluding any rows in which dcutvar
is flagged as "Y".
DTHDTC and DTHFL are set to missing for any records where dthchangevar
is flagged as "Y". Any
variables with the "DCUT_TEMP" prefix are removed.
ae <- data.frame( USUBJID = c("UXYZ123a", "UXYZ123b", "UXYZ123c", "UXYZ123d"), DCUT_TEMP_REMOVE = c("Y", "", "NA", NA) ) ae_final <- apply_cut(dsin = ae, dcutvar = DCUT_TEMP_REMOVE, dthchangevar = DCUT_TEMP_DTHCHANGE) dm <- data.frame( USUBJID = c("UXYZ123a", "UXYZ123b", "UXYZ123b"), DTHDTC = c("2014-10-20", "2014-10-21", "2013-09-08"), DTHFL = c("Y", "Y", "Y"), DCUT_TEMP_REMOVE = c(NA, NA, "Y"), DCUT_TEMP_DTHCHANGE = c(NA, "Y", "") ) dm_final <- apply_cut(dsin = dm, dcutvar = DCUT_TEMP_REMOVE, dthchangevar = DCUT_TEMP_DTHCHANGE)
ae <- data.frame( USUBJID = c("UXYZ123a", "UXYZ123b", "UXYZ123c", "UXYZ123d"), DCUT_TEMP_REMOVE = c("Y", "", "NA", NA) ) ae_final <- apply_cut(dsin = ae, dcutvar = DCUT_TEMP_REMOVE, dthchangevar = DCUT_TEMP_DTHCHANGE) dm <- data.frame( USUBJID = c("UXYZ123a", "UXYZ123b", "UXYZ123b"), DTHDTC = c("2014-10-20", "2014-10-21", "2013-09-08"), DTHFL = c("Y", "Y", "Y"), DCUT_TEMP_REMOVE = c(NA, NA, "Y"), DCUT_TEMP_DTHCHANGE = c(NA, "Y", "") ) dm_final <- apply_cut(dsin = dm, dcutvar = DCUT_TEMP_REMOVE, dthchangevar = DCUT_TEMP_DTHCHANGE)
After filtering the input DS dataset (based on the given filter condition), any
records where the SDTMv date/time variable is on or before the datacut date/time (after
imputations) will be returned in the output datacut dataset (DCUT). Note that ds_date_var
and cut_date
inputs must be in ISO 8601 format (YYYY-MM-DDThh:mm:ss) and will be imputed
using the impute_sdtm()
and impute_dcutdtc()
functions.
create_dcut(dataset_ds, ds_date_var, filter, cut_date, cut_description)
create_dcut(dataset_ds, ds_date_var, filter, cut_date, cut_description)
dataset_ds |
Input DS SDTMv dataset |
ds_date_var |
Character date/time variable in the DS SDTMv to be compared against the datacut date |
filter |
Condition to filter patients in DS, should give 1 row per patient |
cut_date |
Datacut date/time, e.g. "2022-10-22", or NA if no date cut is to be applied |
cut_description |
Datacut date/time description, e.g. "Clinical Cut Off Date" |
Datacut dataset containing the variables USUBJID
, DCUTDTC
, DCUTDTM
and
DCUTDESC
.
Alana Harris
ds <- tibble::tribble( ~USUBJID, ~DSSEQ, ~DSDECOD, ~DSSTDTC, "subject1", 1, "INFORMED CONSENT", "2020-06-23", "subject1", 2, "RANDOMIZATION", "2020-08-22", "subject1", 3, "WITHDRAWAL BY SUBJECT", "2020-05-01", "subject2", 1, "INFORMED CONSENT", "2020-07-13", "subject3", 1, "INFORMED CONSENT", "2020-06-03", "subject4", 1, "INFORMED CONSENT", "2021-01-01", "subject4", 2, "RANDOMIZATION", "2023-01-01" ) dcut <- create_dcut( dataset_ds = ds, ds_date_var = DSSTDTC, filter = DSDECOD == "RANDOMIZATION", cut_date = "2022-01-01", cut_description = "Clinical Cutoff Date" )
ds <- tibble::tribble( ~USUBJID, ~DSSEQ, ~DSDECOD, ~DSSTDTC, "subject1", 1, "INFORMED CONSENT", "2020-06-23", "subject1", 2, "RANDOMIZATION", "2020-08-22", "subject1", 3, "WITHDRAWAL BY SUBJECT", "2020-05-01", "subject2", 1, "INFORMED CONSENT", "2020-07-13", "subject3", 1, "INFORMED CONSENT", "2020-06-03", "subject4", 1, "INFORMED CONSENT", "2021-01-01", "subject4", 2, "RANDOMIZATION", "2023-01-01" ) dcut <- create_dcut( dataset_ds = ds, ds_date_var = DSSTDTC, filter = DSDECOD == "RANDOMIZATION", cut_date = "2022-01-01", cut_description = "Clinical Cutoff Date" )
An example Adverse Events (AE) SDTMv domain.
datacutr_ae
datacutr_ae
A dataset with 5 rows and 3 variables:
Unique Subject Identifier
Reported Term for the Adverse Event
Start Date/Time of Adverse Event
An example Demographics (DM) SDTMv domain.
datacutr_dm
datacutr_dm
A dataset with 5 rows and 3 variables:
Unique Subject Identifier
Subject Death Flag
Date/Time of Death
An example Disposition (DS) SDTMv domain.
datacutr_ds
datacutr_ds
A dataset with 5 rows and 3 variables:
Unique Subject Identifier
Standardized Disposition Term
Start Date/Time of Disposition Event
An example Findings About Events or Interventions (FA) SDTMv domain.
datacutr_fa
datacutr_fa
A dataset with 5 rows and 4 variables:
Unique Subject Identifier
Result or Finding in Original Units
Date/Time of Collection
Start Date/Time of Observation
An example Laboratory Test Results (LB) SDTMv domain.
datacutr_lb
datacutr_lb
A dataset with 5 rows and 3 variables:
Unique Subject Identifier
Result or Finding in Original Units
Date/Time of Specimen Collection
An example Subject Characteristics (SC) SDTMv domain.
datacutr_sc
datacutr_sc
A dataset with 5 rows and 2 variables:
Unique Subject Identifier
Result or Finding in Original Units
An example Trial Summary (TS) SDTMv domain.
datacutr_ts
datacutr_ts
A dataset with 5 rows and 2 variables:
Unique Subject Identifier
Parameter Value
Use to apply a datacut to either an xxSTDTC or xxDTC SDTM date variable. The datacut date from
the datacut dataset is merged on to the input SDTMv dataset and renamed to TEMP_DCUT_DCUTDTM
.
A flag TEMP_DCUT_REMOVE
is added to the dataset to indicate the observations that would be
removed when the cut is applied.
Note that this function applies a patient level datacut at the same time (using the pt_cut()
function), and also imputes dates in the specified SDTMv dataset (using the impute_sdtm()
function).
date_cut(dataset_sdtm, sdtm_date_var, dataset_cut, cut_var)
date_cut(dataset_sdtm, sdtm_date_var, dataset_cut, cut_var)
dataset_sdtm |
Input SDTMv dataset |
sdtm_date_var |
Input date variable found in the |
dataset_cut |
Input datacut dataset |
cut_var |
Datacut date variable |
Input dataset plus a flag TEMP_DCUT_REMOVE
to indicate which observations would be
dropped when a datacut is applied
Alana Harris
library(lubridate) dcut <- tibble::tribble( ~USUBJID, ~DCUTDTM, ~DCUTDTC, "subject1", ymd_hms("2020-10-11T23:59:59"), "2020-10-11T23:59:59", "subject2", ymd_hms("2020-10-11T23:59:59"), "2020-10-11T23:59:59", "subject4", ymd_hms("2020-10-11T23:59:59"), "2020-10-11T23:59:59" ) ae <- tibble::tribble( ~USUBJID, ~AESEQ, ~AESTDTC, "subject1", 1, "2020-01-02T00:00:00", "subject1", 2, "2020-08-31T00:00:00", "subject1", 3, "2020-10-10T00:00:00", "subject2", 2, "2020-02-20T00:00:00", "subject3", 1, "2020-03-02T00:00:00", "subject4", 1, "2020-11-02T00:00:00", "subject4", 2, "" ) ae_out <- date_cut( dataset_sdtm = ae, sdtm_date_var = AESTDTC, dataset_cut = dcut, cut_var = DCUTDTM )
library(lubridate) dcut <- tibble::tribble( ~USUBJID, ~DCUTDTM, ~DCUTDTC, "subject1", ymd_hms("2020-10-11T23:59:59"), "2020-10-11T23:59:59", "subject2", ymd_hms("2020-10-11T23:59:59"), "2020-10-11T23:59:59", "subject4", ymd_hms("2020-10-11T23:59:59"), "2020-10-11T23:59:59" ) ae <- tibble::tribble( ~USUBJID, ~AESEQ, ~AESTDTC, "subject1", 1, "2020-01-02T00:00:00", "subject1", 2, "2020-08-31T00:00:00", "subject1", 3, "2020-10-10T00:00:00", "subject2", 2, "2020-02-20T00:00:00", "subject3", 1, "2020-03-02T00:00:00", "subject4", 1, "2020-11-02T00:00:00", "subject4", 2, "" ) ae_out <- date_cut( dataset_sdtm = ae, sdtm_date_var = AESTDTC, dataset_cut = dcut, cut_var = DCUTDTM )
Drops all the temporary variables (variables beginning with TEMP_) from the input dataset. Also allows the user to specify whether or not to drop the temporary variables needed throughout multiple steps of the datacut process (variables beginning with DCUT_TEMP_).
drop_temp_vars(dsin, drop_dcut_temp = TRUE)
drop_temp_vars(dsin, drop_dcut_temp = TRUE)
dsin |
Name of input dataframe |
drop_dcut_temp |
Whether or not to drop variables beginning with DCUT_TEMP_ (TRUE/FALSE). |
The other functions within this package use drop_temp_vars
with the drop_dcut_temp
argument set to FALSE so that the variables needed across multiple steps of the process are
kept. The final datacut takes place in the apply_cut
function, at which point drop_temp_vars
is used with the drop_dcut_temp
argument set to TRUE, so that all temporary variables are
dropped.
Returns the input dataframe, excluding the temporary variables.
ae <- tibble::tribble( ~USUBJID, ~AESEQ, ~TEMP_FLAG, ~DCUT_TEMP_REMOVE, "subject1", 1, "Y", NA, "subject1", 2, "Y", NA, "subject1", 3, NA, "Y", "subject2", 2, "Y", NA, "subject3", 1, NA, "Y", "subject4", 1, NA, "Y" ) drop_temp_vars(dsin = ae) # Drops temp_ and dcut_temp_ variables drop_temp_vars(dsin = ae, drop_dcut_temp = TRUE) # Drops temp_ and dcut_temp_ variables drop_temp_vars(dsin = ae, drop_dcut_temp = FALSE) # Drops temp_ variables
ae <- tibble::tribble( ~USUBJID, ~AESEQ, ~TEMP_FLAG, ~DCUT_TEMP_REMOVE, "subject1", 1, "Y", NA, "subject1", 2, "Y", NA, "subject1", 3, NA, "Y", "subject2", 2, "Y", NA, "subject3", 1, NA, "Y", "subject4", 1, NA, "Y" ) drop_temp_vars(dsin = ae) # Drops temp_ and dcut_temp_ variables drop_temp_vars(dsin = ae, drop_dcut_temp = TRUE) # Drops temp_ and dcut_temp_ variables drop_temp_vars(dsin = ae, drop_dcut_temp = FALSE) # Drops temp_ variables
Imputes partial date/time data cutoff variable (DCUTDTC), as required by the datacut process.
impute_dcutdtc(dsin, varin, varout)
impute_dcutdtc(dsin, varin, varout)
dsin |
Name of input data cut dataframe (i.e; DCUT) |
varin |
Name of input data cutoff variable (i.e; DCUTDTC) which must be in ISO 8601 extended format (YYYY-MM-DDThh:mm:ss). All values of the data cutoff variable must be at least a complete date, or NA. |
varout |
Name of imputed output variable |
Returns the input data cut dataframe, with the additional of one extra variable (varout) in POSIXct datetime format, which is the imputed version of varin.
dcut <- data.frame( USUBJID = rep(c("UXYZ123a"), 7), DCUTDTC = c( "2022-06-23", "2022-06-23T16", "2022-06-23T16:57", "2022-06-23T16:57:30", "2022-06-23T16:57:30.123", "2022-06-23T16:-:30", "2022-06-23T-:57:30" ) ) dcut_final <- impute_dcutdtc(dsin = dcut, varin = DCUTDTC, varout = DCUTDTM)
dcut <- data.frame( USUBJID = rep(c("UXYZ123a"), 7), DCUTDTC = c( "2022-06-23", "2022-06-23T16", "2022-06-23T16:57", "2022-06-23T16:57:30", "2022-06-23T16:57:30.123", "2022-06-23T16:-:30", "2022-06-23T-:57:30" ) ) dcut_final <- impute_dcutdtc(dsin = dcut, varin = DCUTDTC, varout = DCUTDTM)
Imputes partial date/time SDTMv variables, as required by the datacut process.
impute_sdtm(dsin, varin, varout)
impute_sdtm(dsin, varin, varout)
dsin |
Name of input SDTMv dataframe |
varin |
Name of input SDTMv character date/time variable, which must be in ISO 8601 extended format (YYYY-MM-DDThh:mm:ss). The use of date/time intervals are not permitted. |
varout |
Name of imputed output variable |
Returns the input SDTMv dataframe, with the addition of one extra variable (varout) in POSIXct datetime format, which is the imputed version of varin.
ex <- data.frame( USUBJID = rep(c("UXYZ123a"), 13), EXSTDTC = c( "", "2022", "2022-06", "2022-06-23", "2022-06-23T16", "2022-06-23T16:57", "2022-06-23T16:57:30", "2022-06-23T16:57:30.123", "2022-06-23T16:-:30", "2022-06-23T-:57:30", "2022-06--T16:57:30", "2022---23T16:57:30", "--06-23T16:57:30" ) ) ex_imputed <- impute_sdtm(dsin = ex, varin = EXSTDTC, varout = DCUT_TEMP_EXSTDTC)
ex <- data.frame( USUBJID = rep(c("UXYZ123a"), 13), EXSTDTC = c( "", "2022", "2022-06", "2022-06-23", "2022-06-23T16", "2022-06-23T16:57", "2022-06-23T16:57:30", "2022-06-23T16:57:30.123", "2022-06-23T16:-:30", "2022-06-23T-:57:30", "2022-06--T16:57:30", "2022---23T16:57:30", "--06-23T16:57:30" ) ) ex_imputed <- impute_sdtm(dsin = ex, varin = EXSTDTC, varout = DCUT_TEMP_EXSTDTC)
Applies the selected type of datacut on each SDTMv dataset based on the chosen SDTMv date variable, and outputs the resulting cut datasets, as well as the datacut dataset, as a list. It provides an option to perform a "special" cut on the demography (dm) domain in which any deaths occurring after the datacut date are removed. It also provides an option to produce a .html file that summarizes the changes applied to the data during the cut, where you can inspect the records that have been removed and/or modified.
process_cut( source_sdtm_data, patient_cut_v = NULL, date_cut_m = NULL, no_cut_v = NULL, dataset_cut, cut_var, special_dm = TRUE, read_out = FALSE, out_path = "." )
process_cut( source_sdtm_data, patient_cut_v = NULL, date_cut_m = NULL, no_cut_v = NULL, dataset_cut, cut_var, special_dm = TRUE, read_out = FALSE, out_path = "." )
source_sdtm_data |
A list of uncut SDTMv dataframes |
patient_cut_v |
A vector of quoted SDTMv domain names in which a patient cut should be applied. To be left blank if a patient cut should not be performed on any domains. |
date_cut_m |
A 2 column matrix, where the first column is the quoted SDTMv domain names in which a date cut should be applied and the second column is the quoted SDTMv date variables used to carry out the date cut for each SDTMv domain. To be left blank if a date cut should not be performed on any domains. |
no_cut_v |
A vector of quoted SDTMv domain names in which no cut should be applied. To be left blank if no domains are to remain exactly as source. |
dataset_cut |
Input datacut dataset, e.g. dcut |
cut_var |
Datacut date variable within the dataset_cut dataset, e.g. DCUTDTM |
special_dm |
A logical input indicating whether the |
read_out |
A logical input indicating whether a summary file for the datacut should be
produced. If |
out_path |
A character vector of file save path for the summary file if |
Returns a list of all input SDTMv datasets, plus the datacut dataset, after performing the selected datacut on each SDTMv domain.
dcut <- data.frame( USUBJID = c("a", "b"), DCUTDTC = c("2022-02-17", "2022-02-17") ) dcut <- impute_dcutdtc(dcut, DCUTDTC, DCUTDTM) sc <- data.frame(USUBJID = c("a", "a", "b", "c")) ts <- data.frame(USUBJID = c("a", "a", "b", "c")) ae <- data.frame( USUBJID = c("a", "a", "b", "c"), AESTDTC = c("2022-02-16", "2022-02-18", "2022-02-16", "2022-02-16") ) source_data <- list(sc = sc, ae = ae, ts = ts) cut_data <- process_cut( source_sdtm_data = source_data, patient_cut_v = c("sc"), date_cut_m = rbind(c("ae", "AESTDTC")), no_cut_v = c("ts"), dataset_cut = dcut, cut_var = DCUTDTM, special_dm = FALSE )
dcut <- data.frame( USUBJID = c("a", "b"), DCUTDTC = c("2022-02-17", "2022-02-17") ) dcut <- impute_dcutdtc(dcut, DCUTDTC, DCUTDTM) sc <- data.frame(USUBJID = c("a", "a", "b", "c")) ts <- data.frame(USUBJID = c("a", "a", "b", "c")) ae <- data.frame( USUBJID = c("a", "a", "b", "c"), AESTDTC = c("2022-02-16", "2022-02-18", "2022-02-16", "2022-02-16") ) source_data <- list(sc = sc, ae = ae, ts = ts) cut_data <- process_cut( source_sdtm_data = source_data, patient_cut_v = c("sc"), date_cut_m = rbind(c("ae", "AESTDTC")), no_cut_v = c("ts"), dataset_cut = dcut, cut_var = DCUTDTM, special_dm = FALSE )
Use to apply a patient cut to an SDTMv dataset (i.e. subset SDTMv observations on patients included in the dataset_cut input dataset)
pt_cut(dataset_sdtm, dataset_cut)
pt_cut(dataset_sdtm, dataset_cut)
dataset_sdtm |
Input SDTMv dataset |
dataset_cut |
Input datacut dataset, e.g. dcut |
Input dataset plus a flag DCUT_TEMP_REMOVE
to indicate which observations would be
dropped when a patient level datacut is applied
Alana Harris
library(lubridate) dcut <- tibble::tribble( ~USUBJID, ~DCUTDTM, "subject1", ymd_hms("2020-10-11T23:59:59"), "subject2", ymd_hms("2020-10-11T23:59:59"), "subject4", ymd_hms("2020-10-11T23:59:59") ) ae <- tibble::tribble( ~USUBJID, ~AESEQ, ~AESTDTC, "subject1", 1, "2020-01-02T00:00:00", "subject1", 2, "2020-08-31T00:00:00", "subject1", 3, "2020-10-10T00:00:00", "subject2", 2, "2020-02-20T00:00:00", "subject3", 1, "2020-03-02T00:00:00", "subject4", 1, "2020-11-02T00:00:00" ) ae_out <- pt_cut( dataset_sdtm = ae, dataset_cut = dcut )
library(lubridate) dcut <- tibble::tribble( ~USUBJID, ~DCUTDTM, "subject1", ymd_hms("2020-10-11T23:59:59"), "subject2", ymd_hms("2020-10-11T23:59:59"), "subject4", ymd_hms("2020-10-11T23:59:59") ) ae <- tibble::tribble( ~USUBJID, ~AESEQ, ~AESTDTC, "subject1", 1, "2020-01-02T00:00:00", "subject1", 2, "2020-08-31T00:00:00", "subject1", 3, "2020-10-10T00:00:00", "subject2", 2, "2020-02-20T00:00:00", "subject3", 1, "2020-03-02T00:00:00", "subject4", 1, "2020-11-02T00:00:00" ) ae_out <- pt_cut( dataset_sdtm = ae, dataset_cut = dcut )
Produces a .html file summarizing the changes applied to data during a data cut. The file will contain an overview for the change in number of records for each dataset, the types of cut applied and the opportunity to inspect the removed records.
read_out( dcut = NULL, patient_cut_data = NULL, date_cut_data = NULL, dm_cut = NULL, no_cut_list = NULL, out_path = "." )
read_out( dcut = NULL, patient_cut_data = NULL, date_cut_data = NULL, dm_cut = NULL, no_cut_list = NULL, out_path = "." )
dcut |
The output datacut dataset (DCUT), created via the |
patient_cut_data |
A list of quoted SDTMv domain names in which a patient cut has been.
applied (via the |
date_cut_data |
A list of quoted SDTMv domain names in which a date cut has been applied.
(via the |
dm_cut |
The output dataset, created via the |
no_cut_list |
List of of quoted SDTMv domain names in which no cut should be applied. To be left blank if no domains are to remain exactly as source. |
out_path |
A character vector of file save path for the summary file;
the default corresponds to the working directory, |
Returns a .html file summarizing the changes made to data during a datacut.
## Not run: dcut <- tibble::tribble( ~USUBJID, ~DCUTDTM, ~DCUTDTC, "subject1", lubridate::ymd_hms("2020-10-11T23:59:59"), "2020-10-11T23:59:59", "subject2", lubridate::ymd_hms("2020-10-11T23:59:59"), "2020-10-11T23:59:59", "subject4", lubridate::ymd_hms("2020-10-11T23:59:59"), "2020-10-11T23:59:59" ) ae <- tibble::tribble( ~USUBJID, ~AESEQ, ~AESTDTC, "subject1", 1, "2020-01-02T00:00:00", "subject1", 2, "2020-08-31T00:00:00", "subject1", 3, "2020-10-10T00:00:00", "subject2", 2, "2020-02-20T00:00:00", "subject3", 1, "2020-03-02T00:00:00", "subject4", 1, "2020-11-02T00:00:00", "subject4", 2, "" ) dm <- tibble::tribble( ~USUBJID, ~DTHDTC, ~DTHFL, "subject1", "2020-10-11", "Y", "subject2", "2020-10-12", "Y", ) dt_ae <- date_cut( dataset_sdtm = ae, sdtm_date_var = AESTDTC, dataset_cut = dcut, cut_var = DCUTDTM ) pt_ae <- pt_cut( dataset_sdtm = ae, dataset_cut = dcut ) dm_cut <- special_dm_cut( dataset_dm = dm, dataset_cut = dcut, cut_var = DCUTDTM ) read_out(dcut, patient_cut_data = list(ae = pt_ae), date_cut_data = list(ae = dt_ae), dm_cut) ## End(Not run)
## Not run: dcut <- tibble::tribble( ~USUBJID, ~DCUTDTM, ~DCUTDTC, "subject1", lubridate::ymd_hms("2020-10-11T23:59:59"), "2020-10-11T23:59:59", "subject2", lubridate::ymd_hms("2020-10-11T23:59:59"), "2020-10-11T23:59:59", "subject4", lubridate::ymd_hms("2020-10-11T23:59:59"), "2020-10-11T23:59:59" ) ae <- tibble::tribble( ~USUBJID, ~AESEQ, ~AESTDTC, "subject1", 1, "2020-01-02T00:00:00", "subject1", 2, "2020-08-31T00:00:00", "subject1", 3, "2020-10-10T00:00:00", "subject2", 2, "2020-02-20T00:00:00", "subject3", 1, "2020-03-02T00:00:00", "subject4", 1, "2020-11-02T00:00:00", "subject4", 2, "" ) dm <- tibble::tribble( ~USUBJID, ~DTHDTC, ~DTHFL, "subject1", "2020-10-11", "Y", "subject2", "2020-10-12", "Y", ) dt_ae <- date_cut( dataset_sdtm = ae, sdtm_date_var = AESTDTC, dataset_cut = dcut, cut_var = DCUTDTM ) pt_ae <- pt_cut( dataset_sdtm = ae, dataset_cut = dcut ) dm_cut <- special_dm_cut( dataset_dm = dm, dataset_cut = dcut, cut_var = DCUTDTM ) read_out(dcut, patient_cut_data = list(ae = pt_ae), date_cut_data = list(ae = dt_ae), dm_cut) ## End(Not run)
Applies patient cut if patient not in source DCUT, as well as clearing death information within DM if death occurred after datacut date
special_dm_cut(dataset_dm, dataset_cut, cut_var = DCUTDTM)
special_dm_cut(dataset_dm, dataset_cut, cut_var = DCUTDTM)
dataset_dm |
Input DM SDTMv dataset |
dataset_cut |
Input datacut dataset |
cut_var |
Datacut date variable found in the |
Input dataset plus a flag DCUT_TEMP_REMOVE
to indicate which observations would be
dropped when a datacut is applied, and a flag DCUT_TEMP_DTHCHANGE
to indicate which
observations have death occurring after data cut date for clearing
Tim Barnett
dcut <- tibble::tribble( ~USUBJID, ~DCUTDTC, ~DCUTDTM, "01-701-1015", "2014-10-20T23:59:59", lubridate::ymd_hms("2014-10-20T23:59:59"), "01-701-1023", "2014-10-20T23:59:59", lubridate::ymd_hms("2014-10-20T23:59:59") ) dm <- tibble::tribble( ~USUBJID, ~DTHDTC, ~DTHFL, "01-701-1015", "2014-10-20", "Y", "01-701-1023", "2014-10-21", "Y", ) special_dm_cut( dataset_dm = dm, dataset_cut = dcut, cut_var = DCUTDTM )
dcut <- tibble::tribble( ~USUBJID, ~DCUTDTC, ~DCUTDTM, "01-701-1015", "2014-10-20T23:59:59", lubridate::ymd_hms("2014-10-20T23:59:59"), "01-701-1023", "2014-10-20T23:59:59", lubridate::ymd_hms("2014-10-20T23:59:59") ) dm <- tibble::tribble( ~USUBJID, ~DTHDTC, ~DTHFL, "01-701-1015", "2014-10-20", "Y", "01-701-1023", "2014-10-21", "Y", ) special_dm_cut( dataset_dm = dm, dataset_cut = dcut, cut_var = DCUTDTM )