Add a class | add_class |
Adjust trajectories due to the intercurrent event (ICE) | adjust_trajectories |
Adjust trajectory of a subject's outcome due to the intercurrent event (ICE) | adjust_trajectories_single |
Analyse Multiple Imputed Datasets | analyse |
Analysis of Covariance | ancova |
Implements an Analysis of Covariance (ANCOVA) | ancova_single |
Antidepressant trial data | antidepressant_data |
Applies delta adjustment | apply_delta |
Construct an 'analysis' object | as_analysis |
as_ascii_table | as_ascii_table |
Set Class | as_class |
as_cropped_char | as_cropped_char |
Convert object to dataframe | as_dataframe |
Creates a 'draws' object | as_draws |
Create an imputation object | as_imputation |
Convert indicator to index | as_indices |
Creates a "MMRM" ready dataset | as_mmrm_df |
Create MMRM formula | as_mmrm_formula |
Expand 'data.frame' into a design matrix | as_model_df |
Creates a simple formula object from a string | as_simple_formula |
As array | as_stan_array |
Create vector of Stratas | as_strata |
Assert that all variables exist within a dataset | assert_variables_exist |
Convert character variables to factor | char2fct |
Diagnostics of the MCMC based on ESS | check_ESS |
Diagnostics of the MCMC based on HMC-related measures. | check_hmc_diagn |
Diagnostics of the MCMC | check_mcmc |
Compute covariance matrix for some reference-based methods (JR, CIR) | compute_sigma |
Convert list of 'imputation_list_single()' objects to an 'imputation_list_df()' object (i.e. a list of 'imputation_df()' objects's) | convert_to_imputation_list_df |
Calculate delta from a lagged scale coefficient | d_lagscale |
Create a delta 'data.frame' template | delta_template |
Fit the base imputation model and get parameter estimates | draws draws.approxbayes draws.bayes draws.bmlmi draws.condmean |
Evaluate a call to mmrm | eval_mmrm |
Expand and fill in missing 'data.frame' rows | expand expand_locf fill_locf |
Extract Variables from string vector | extract_covariates |
Set to NA outcome values that would be MNAR if they were missing (i.e. which occur after an ICE handled using a reference-based imputation strategy) | extract_data_nmar_as_na |
Extract draws from a 'stanfit' object | extract_draws |
Extract imputed dataset | extract_imputed_df |
Extract imputed datasets | extract_imputed_dfs |
Extract parameters from a MMRM model | extract_params |
Fit the base imputation model using a Bayesian approach | fit_mcmc |
Fit a MMRM model | fit_mmrm |
Generate data for a single group | generate_data_single |
Creates a stack object populated with bootstrapped samples | get_bootstrap_stack |
Derive conditional multivariate normal parameters | get_conditional_parameters |
Get delta utility variables | get_delta_template |
Fit the base imputation model on bootstrap samples | get_draws_mle |
Extract the Effective Sample Size (ESS) from a 'stanfit' object | get_ESS |
Von Hippel and Bartlett pooling of BMLMI method | get_ests_bmlmi |
Simulate a realistic example dataset | get_example_data |
Creates a stack object populated with jackknife samples | get_jackknife_stack |
Fit MMRM and returns parameter estimates | get_mmrm_sample |
Determine patients missingness group | get_pattern_groups |
Get Pattern Summary | get_pattern_groups_unique |
Expected Pool Components | get_pool_components |
Derive visit distribution parameters | get_visit_distribution_parameters |
Get imputation strategies | getStrategies |
Does object have a class ? | has_class |
if else | ife |
Create a valid 'imputation_df' object | imputation_df |
List of imputations_df | imputation_list_df |
A collection of 'imputation_singles()' grouped by a single subjid ID | imputation_list_single |
Create a valid 'imputation_single' object | imputation_single |
Create imputed datasets | impute impute.condmean impute.random |
Impute data for a single subject | impute_data_individual |
Create imputed datasets | impute_internal |
Sample outcome value | impute_outcome |
invert | invert |
Invert and derive indexes | invert_indexes |
Is value absent | is_absent |
Is character or factor | is_char_fact |
Is single character | is_char_one |
Is package in development mode? | is_in_rbmi_development |
Is character, factor or numeric | is_num_char_fact |
Last Observation Carried Forward | locf |
R6 Class for Storing / Accessing & Sampling Longitudinal Data | longDataConstructor |
Calculate design vector for the lsmeans | ls_design ls_design_counterfactual ls_design_equal ls_design_proportional |
Least Square Means | lsmeans |
Create a 'rbmi' ready cluster | make_rbmi_cluster |
Set the multiple imputation methodology | method method_approxbayes method_bayes method_bmlmi method_condmean |
Parallelise Lapply | par_lapply |
Calculate parametric confidence intervals | parametric_ci |
Pool analysis results obtained from the imputed datasets | as.data.frame.pool pool print.pool |
Bootstrap Pooling via normal approximation | pool_bootstrap_normal |
Bootstrap Pooling via Percentiles | pool_bootstrap_percentile |
Internal Pool Methods | pool_internal pool_internal.bmlmi pool_internal.bootstrap pool_internal.jackknife pool_internal.rubin |
Prepare input data to run the Stan model | prepare_stan_data |
Print 'analysis' object | print.analysis |
Print 'draws' object | print.draws |
Print 'imputation' object | print.imputation |
R6 Class for printing current sampling progress | progressLogger |
P-value of percentile bootstrap | pval_percentile |
QR decomposition | QR_decomp |
Construct random effects formula | random_effects_expr |
rbmi settings | rbmi-settings set_options |
Capture all Output | record |
recursive_reduce | recursive_reduce |
Remove subjects from dataset if they have no observed values | remove_if_all_missing |
Barnard and Rubin degrees of freedom adjustment | rubin_df |
Combine estimates using Rubin's rules | rubin_rules |
Sample Patient Ids | sample_ids |
Create and validate a 'sample_list' object | sample_list |
Sample random values from the multivariate normal distribution | sample_mvnorm |
Create object of 'sample_single' class | sample_single |
R6 Class for scaling (and un-scaling) design matrices | scalerConstructor |
Set simulation parameters of a study group. | set_simul_pars |
Set key variables | set_vars |
Generate data | simulate_data |
Simulate drop-out | simulate_dropout |
Simulate intercurrent event | simulate_ice |
Create simulated datasets | as_vcov simulate_test_data |
Sort 'data.frame' | sort_by |
Transform array into list of arrays | split_dim |
Split a flat list of 'imputation_single()' into multiple 'imputation_df()''s by ID | split_imputations |
R6 Class for a FIFO stack | Stack |
Does a string contain a substring | str_contains |
Strategies | strategies strategy_CIR strategy_CR strategy_JR strategy_LMCF strategy_MAR |
string_pad | string_pad |
Transpose imputations | transpose_imputations |
Transpose results object | transpose_results |
Transpose samples | transpose_samples |
Generic validation method | validate |
Validate analysis results | validate_analyse_pars |
Validate a longdata object | validate_dataice validate_datalong validate_datalong_complete validate_datalong_notMissing validate_datalong_types validate_datalong_unifromStrata validate_datalong_varExists |
Validate user specified strategies | validate_strategies |
Validate 'analysis' objects | validate.analysis |
Validate 'draws' object | validate.draws |
Validate 'is_mar' for a given subject | validate.is_mar |
Validate inputs for 'vars' | validate.ivars |
Validate user supplied references | validate.references |
Validate 'sample_list' object | validate.sample_list |
Validate 'sample_single' object | validate.sample_single |
Validate a 'simul_pars' object | validate.simul_pars |
Validate a 'stan_data' object | validate.stan_data |