Package: crmPack 2.0.0.9001

Daniel Sabanes Bove

crmPack: Object-Oriented Implementation of CRM Designs

Implements a wide range of model-based dose escalation designs, ranging from classical and modern continual reassessment methods (CRMs) based on dose-limiting toxicity endpoints to dual-endpoint designs taking into account a biomarker/efficacy outcome. The focus is on Bayesian inference, making it very easy to setup a new design with its own JAGS code. However, it is also possible to implement 3+3 designs for comparison or models with non-Bayesian estimation. The whole package is written in a modular form in the S4 class system, making it very flexible for adaptation to new models, escalation or stopping rules. Further details are presented in Sabanes Bove et al. (2019) <doi:10.18637/jss.v089.i10>.

Authors:Daniel Sabanes Bove [aut, cre], Wai Yin Yeung [aut], Burak Kuersad Guenhan [aut], Giuseppe Palermo [aut], Thomas Jaki [aut], Jiawen Zhu [aut], Ziwei Liao [aut], Dimitris Kontos [aut], Marlene Schulte-Goebel [aut], Doug Kelkhoff [aut], Oliver Boix [aut], Robert Adams [aut], Clara Beck [aut], John Kirkpatrick [aut], F. Hoffmann-La Roche AG [cph, fnd], Merck Healthcare KGaA [cph, fnd], Bayer AG [cph, fnd]

crmPack_2.0.0.9001.tar.gz
crmPack_2.0.0.9001.zip(r-4.5)crmPack_2.0.0.9001.zip(r-4.4)crmPack_2.0.0.9001.zip(r-4.3)
crmPack_2.0.0.9001.tgz(r-4.4-any)crmPack_2.0.0.9001.tgz(r-4.3-any)
crmPack_2.0.0.9001.tar.gz(r-4.5-noble)crmPack_2.0.0.9001.tar.gz(r-4.4-noble)
crmPack_2.0.0.9001.tgz(r-4.4-emscripten)crmPack_2.0.0.9001.tgz(r-4.3-emscripten)
crmPack.pdf |crmPack.html
crmPack/json (API)
NEWS

# Install 'crmPack' in R:
install.packages('crmPack', repos = c('https://pharmaverse.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/openpharma/crmpack/issues

Uses libs:
  • jags– Just Another Gibbs Sampler for Bayesian MCMC
  • c++– GNU Standard C++ Library v3

On CRAN:

6.94 score 20 stars 208 scripts 446 downloads 1 mentions 444 exports 73 dependencies

Last updated 1 months agofrom:2e9413ddc3. Checks:ERROR: 3 WARNING: 4. Indexed: no.

TargetResultDate
Doc / VignettesFAILNov 15 2024
R-4.5-winWARNINGNov 15 2024
R-4.5-linuxWARNINGNov 15 2024
R-4.4-winWARNINGNov 15 2024
R-4.4-macERRORNov 15 2024
R-4.3-winWARNINGNov 15 2024
R-4.3-macERRORNov 15 2024

Exports:.CohortSizeConst.CohortSizeDLT.CohortSizeMax.CohortSizeMin.CohortSizeOrdinal.CohortSizeParts.CohortSizeRange.CrmPackClass.DADesign.DALogisticLogNormal.DASimulations.Data.DataDA.DataDual.DataGrouped.DataMixture.DataOrdinal.DataParts.DefaultCohortSize.DefaultCohortSizeConst.DefaultCohortSizeDLT.DefaultCohortSizeMax.DefaultCohortSizeMin.DefaultCohortSizeOrdinal.DefaultCohortSizeParts.DefaultCohortSizeRange.DefaultDADesign.DefaultDALogisticLogNormal.DefaultDASimulations.DefaultData.DefaultDataDA.DefaultDataDual.DefaultDataGeneral.DefaultDataGrouped.DefaultDataMixture.DefaultDataOrdinal.DefaultDataParts.DefaultDesign.DefaultDesignGrouped.DefaultDesignOrdinal.DefaultDualDesign.DefaultDualEndpoint.DefaultDualEndpointBeta.DefaultDualEndpointEmax.DefaultDualEndpointRW.DefaultDualResponsesDesign.DefaultDualResponsesSamplesDesign.DefaultDualSimulations.DefaultDualSimulationsSummary.DefaultEffFlexi.DefaultEffloglog.DefaultFractionalCRM.DefaultGeneralModel.DefaultGeneralSimulations.DefaultGeneralSimulationsSummary.DefaultIncrements.DefaultIncrementsDoseLevels.DefaultIncrementsHSRBeta.DefaultIncrementsMaxToxProb.DefaultIncrementsMin.DefaultIncrementsOrdinal.DefaultIncrementsRelative.DefaultIncrementsRelativeDLT.DefaultIncrementsRelativeDLTCurrent.DefaultIncrementsRelativeParts.DefaultLogisticIndepBeta.DefaultLogisticKadane.DefaultLogisticKadaneBetaGamma.DefaultLogisticLogNormal.DefaultLogisticLogNormalGrouped.DefaultLogisticLogNormalMixture.DefaultLogisticLogNormalOrdinal.DefaultLogisticLogNormalSub.DefaultLogisticNormal.DefaultLogisticNormalFixedMixture.DefaultLogisticNormalMixture.DefaultMcmcOptions.DefaultModelEff.DefaultModelLogNormal.DefaultModelParamsNormal.DefaultModelPseudo.DefaultModelTox.DefaultNextBest.DefaultNextBestDualEndpoint.DefaultNextBestInfTheory.DefaultNextBestMaxGain.DefaultNextBestMaxGainSamples.DefaultNextBestMinDist.DefaultNextBestMTD.DefaultNextBestNCRM.DefaultNextBestNCRMLoss.DefaultNextBestOrdinal.DefaultNextBestProbMTDLTE.DefaultNextBestProbMTDMinDist.DefaultNextBestTD.DefaultNextBestTDsamples.DefaultNextBestThreePlusThree.DefaultOneParExpPrior.DefaultOneParLogNormalPrior.DefaultProbitLogNormal.DefaultProbitLogNormalRel.DefaultPseudoDualFlexiSimulations.DefaultPseudoDualSimulations.DefaultPseudoDualSimulationsSummary.DefaultPseudoSimulations.DefaultPseudoSimulationsSummary.DefaultRuleDesign.DefaultRuleDesignOrdinal.DefaultSafetyWindow.DefaultSafetyWindowConst.DefaultSafetyWindowSize.DefaultSamples.DefaultSimulations.DefaultSimulationsSummary.DefaultStoppingAll.DefaultStoppingAny.DefaultStoppingCohortsNearDose.DefaultStoppingExternal.DefaultStoppingHighestDose.DefaultStoppingList.DefaultStoppingLowestDoseHSRBeta.DefaultStoppingMaxGainCIRatio.DefaultStoppingMinCohorts.DefaultStoppingMinPatients.DefaultStoppingMissingDose.DefaultStoppingMTDCV.DefaultStoppingMTDdistribution.DefaultStoppingOrdinal.DefaultStoppingPatientsNearDose.DefaultStoppingSpecificDose.DefaultStoppingTargetBiomarker.DefaultStoppingTargetProb.DefaultStoppingTDCIRatio.DefaultTDDesign.DefaultTDsamplesDesign.DefaultTITELogisticLogNormal.Design.DesignGrouped.DesignOrdinal.DualDesign.DualEndpoint.DualEndpointBeta.DualEndpointEmax.DualEndpointRW.DualResponsesDesign.DualResponsesSamplesDesign.DualSimulations.DualSimulationsSummary.EffFlexi.Effloglog.FractionalCRM.GeneralData.GeneralModel.GeneralSimulations.GeneralSimulationsSummary.IncrementsDoseLevels.IncrementsHSRBeta.IncrementsMaxToxProb.IncrementsMin.IncrementsOrdinal.IncrementsRelative.IncrementsRelativeDLT.IncrementsRelativeDLTCurrent.IncrementsRelativeParts.LogisticIndepBeta.LogisticKadane.LogisticKadaneBetaGamma.LogisticLogNormal.LogisticLogNormalGrouped.LogisticLogNormalMixture.LogisticLogNormalOrdinal.LogisticLogNormalSub.LogisticNormal.LogisticNormalFixedMixture.LogisticNormalMixture.McmcOptions.ModelEff.ModelLogNormal.ModelParamsNormal.ModelPseudo.ModelTox.NextBestDualEndpoint.NextBestInfTheory.NextBestMaxGain.NextBestMaxGainSamples.NextBestMinDist.NextBestMTD.NextBestNCRM.NextBestNCRMLoss.NextBestOrdinal.NextBestProbMTDLTE.NextBestProbMTDMinDist.NextBestTD.NextBestTDsamples.NextBestThreePlusThree.OneParExpPrior.OneParLogNormalPrior.ProbitLogNormal.ProbitLogNormalRel.PseudoDualFlexiSimulations.PseudoDualSimulations.PseudoDualSimulationsSummary.PseudoSimulations.PseudoSimulationsSummary.RuleDesign.RuleDesignOrdinal.SafetyWindowConst.SafetyWindowSize.Samples.Simulations.SimulationsSummary.StoppingAll.StoppingAny.StoppingCohortsNearDose.StoppingExternal.StoppingHighestDose.StoppingList.StoppingLowestDoseHSRBeta.StoppingMaxGainCIRatio.StoppingMinCohorts.StoppingMinPatients.StoppingMissingDose.StoppingMTDCV.StoppingMTDdistribution.StoppingOrdinal.StoppingPatientsNearDose.StoppingSpecificDose.StoppingTargetBiomarker.StoppingTargetProb.StoppingTDCIRatio.TDDesign.TDsamplesDesign.TITELogisticLogNormal%>%approximateassert_equalassert_formatassert_lengthassert_probabilitiesassert_probabilityassert_probability_rangeassert_rangebiomarkercheck_equalcheck_formatcheck_lengthcheck_probabilitiescheck_probabilitycheck_probability_rangecheck_rangeCohortSizeConstCohortSizeDLTCohortSizeMaxCohortSizeMinCohortSizeOrdinalCohortSizePartsCohortSizeRangecrmPackExamplecrmPackHelpDADesignDALogisticLogNormaldapplyDASimulationsDataDataDADataDualDataGroupedDataMixtureDataOrdinalDataPartsDesignDesignGroupedDesignOrdinaldisable_loggingdosedose_grid_rangedoseFunctionDualDesignDualEndpointDualEndpointBetaDualEndpointEmaxDualEndpointRWDualResponsesDesignDualResponsesSamplesDesignDualSimulationsEffFlexiefficacyefficacyFunctionEffloglogenable_loggingexamineexpect_formatexpect_probabilitiesexpect_probabilityexpect_probability_rangeexpect_rangefitfitGainfitPEMFractionalCRMgainGeneralSimulationsgetgetEffh_all_equivalenth_check_fun_formalsh_convert_ordinal_datah_convert_ordinal_modelh_convert_ordinal_samplesh_default_if_emptyh_find_intervalh_format_numberh_in_rangeh_info_theory_disth_is_positive_definiteh_jags_add_dummyh_jags_extract_samplesh_jags_get_datah_jags_get_model_initsh_jags_join_modelsh_jags_write_modelh_model_dual_endpoint_betah_model_dual_endpoint_rhoh_model_dual_endpoint_sigma2betaWh_model_dual_endpoint_sigma2Wh_next_best_eligible_dosesh_next_best_mg_cih_next_best_mg_doses_at_gridh_next_best_mg_ploth_next_best_mgsamples_ploth_next_best_ncrm_loss_ploth_next_best_td_ploth_next_best_tdsamples_ploth_null_if_nah_rapplyh_slotsh_test_named_numerich_validate_combine_resultsIncrementsDoseLevelsIncrementsHSRBetaIncrementsMaxToxProbIncrementsMinIncrementsOrdinalIncrementsRelativeIncrementsRelativeDLTIncrementsRelativeDLTCurrentIncrementsRelativePartsis_logging_enabledlog_traceLogisticIndepBetaLogisticKadaneLogisticKadaneBetaGammaLogisticLogNormalLogisticLogNormalGroupedLogisticLogNormalMixtureLogisticLogNormalOrdinalLogisticLogNormalSubLogisticNormalLogisticNormalFixedMixtureLogisticNormalMixturelogitmatch_within_tolerancemaxDosemaxSizemcmcMcmcOptionsMinimalInformativeminSizeModelLogNormalModelParamsNormalnextBestNextBestDualEndpointNextBestInfTheoryNextBestMaxGainNextBestMaxGainSamplesNextBestMinDistNextBestMTDNextBestNCRMNextBestNCRMLossNextBestOrdinalNextBestProbMTDLTENextBestProbMTDMinDistNextBestTDNextBestTDsamplesNextBestThreePlusThreengridOneParExpPriorOneParLogNormalPriorplotplotDualResponsesplotGainprobprobFunctionprobitProbitLogNormalProbitLogNormalRelPseudoDualSimulationsPseudoSimulationsQuantiles2LogisticNormalRuleDesignRuleDesignOrdinalSafetyWindowConstSafetyWindowSizeSamplessaveSampleset_seedshowsimulateSimulationssizeStoppingAllStoppingAnyStoppingCohortsNearDoseStoppingExternalStoppingHighestDoseStoppingListStoppingLowestDoseHSRBetaStoppingMaxGainCIRatioStoppingMinCohortsStoppingMinPatientsStoppingMissingDoseStoppingMTDCVStoppingMTDdistributionStoppingOrdinalStoppingPatientsNearDoseStoppingSpecificDoseStoppingTargetBiomarkerStoppingTargetProbStoppingTDCIRatiostopTrialsummaryTDDesignTDsamplesDesigntest_formattest_lengthtest_probabilitiestest_probabilitytest_probability_rangetest_rangeThreePlusThreeDesigntidyTITELogisticLogNormalupdatewindowLength

Dependencies:backportsbase64encbslibcachemcheckmateclicodacolorspacecpp11digestdplyrevaluatefansifarverfastmapfontawesomeformatRfsfutile.loggerfutile.optionsgenericsGenSAggplot2gluegridExtragtablehighrhtmltoolsisobandjquerylibjsonlitekableExtraknitrlabelinglambda.rlatticelifecyclemagrittrMASSMatrixmemoisemgcvmimemunsellmvtnormnlmeparallellypillarpkgconfigR6rappdirsRColorBrewerrjagsrlangrmarkdownrstudioapisassscalesstringistringrsurvivalsvglitesystemfontstibbletidyselecttinytexutf8vctrsviridisLitewithrxfunxml2yaml

Readme and manuals

Help Manual

Help pageTopics
Object-oriented implementation of CRM designs-package crmPack-package crmPack
'CohortSize'.DefaultCohortSize CohortSize CohortSize-class
The method combining two atomic stopping rules&,Stopping,Stopping-method
The method combining an atomic and a stopping list&,Stopping,StoppingAll-method
The method combining a stopping list and an atomic&,StoppingAll,Stopping-method
Approximate posterior with (log) normal distributionapproximate approximate,Samples-method
Additional Assertions for 'checkmate'assertions
Get the Biomarker Levels for a Given Dual-Endpoint Model, Given Dose Levels and Samplesbiomarker biomarker,integer,DualEndpoint,Samples-method biomarker-DualEndpoint
Check if All Arguments Are Equalassert_equal check_equal
Check that an argument is a valid format specificationassert_format check_format expect_format test_format
Check if vectors are of compatible lengthsassert_length check_length test_length
Check if an argument is a probability vectorassert_probabilities check_probabilities expect_probabilities test_probabilities
Check if an argument is a single probability valueassert_probability check_probability expect_probability test_probability
Check if an argument is a probability rangeassert_probability_range check_probability_range expect_probability_range test_probability_range
Check that an argument is a numerical rangeassert_range check_range expect_range test_range
'CohortSizeConst'.CohortSizeConst .DefaultCohortSizeConst CohortSizeConst CohortSizeConst-class
'CohortSizeDLT'.CohortSizeDLT .DefaultCohortSizeDLT CohortSizeDLT CohortSizeDLT-class
'CohortSizeMax'.CohortSizeMax .DefaultCohortSizeMax CohortSizeMax CohortSizeMax-class
'CohortSizeMin'.CohortSizeMin .DefaultCohortSizeMin CohortSizeMin CohortSizeMin-class
'CohortSizeOrdinal'.CohortSizeOrdinal .DefaultCohortSizeOrdinal CohortSizeOrdinal CohortSizeOrdinal-class
'CohortSizeParts'.CohortSizeParts .DefaultCohortSizeParts CohortSizeParts CohortSizeParts-class
'CohortSizeRange'.CohortSizeRange .DefaultCohortSizeRange CohortSizeRange CohortSizeRange-class
'CrmPackClass'.CrmPackClass CrmPackClass CrmPackClass-class
Open the example pdf for crmPackcrmPackExample
Open the browser with help pages for crmPackcrmPackHelp
'DADesign'.DADesign .DefaultDADesign DADesign DADesign-class
'DALogisticLogNormal'.DALogisticLogNormal .DefaultDALogisticLogNormal DALogisticLogNormal DALogisticLogNormal-class
Apply a Function to Subsets of Data Frame.dapply
Initialization function for 'DASimulations'DASimulations
Class for the simulations output from DA based designs.DASimulations .DefaultDASimulations DASimulations-class
'Data'.Data .DefaultData Data Data-class
'DataDA'.DataDA .DefaultDataDA DataDA DataDA-class
'DataDual'.DataDual .DefaultDataDual DataDual DataDual-class
'DataGrouped'.DataGrouped .DefaultDataGrouped DataGrouped DataGrouped-class
'DataMixture'.DataMixture .DefaultDataMixture DataMixture DataMixture-class
'DataOrdinal'.DataOrdinal .DefaultDataOrdinal DataOrdinal DataOrdinal-class
'DataParts'.DataParts .DefaultDataParts DataParts DataParts-class
'Design'.DefaultDesign .Design Design Design-class
'DesignGrouped'.DefaultDesignGrouped .DesignGrouped DesignGrouped DesignGrouped-class
'DesignOrdinal'.DefaultDesignOrdinal .DesignOrdinal DesignOrdinal DesignOrdinal-class
Computing the Doses for a given independent variable, Model and Samplesdose dose,numeric,DualEndpoint,Samples-method dose,numeric,EffFlexi,Samples-method dose,numeric,Effloglog,missing-method dose,numeric,LogisticIndepBeta,missing-method dose,numeric,LogisticIndepBeta,Samples-method dose,numeric,LogisticKadane,Samples-method dose,numeric,LogisticKadaneBetaGamma,Samples-method dose,numeric,LogisticLogNormal,Samples-method dose,numeric,LogisticLogNormalGrouped,Samples-method dose,numeric,LogisticLogNormalMixture,Samples-method dose,numeric,LogisticLogNormalOrdinal,Samples-method dose,numeric,LogisticLogNormalSub,Samples-method dose,numeric,LogisticNormal,Samples-method dose,numeric,LogisticNormalFixedMixture,Samples-method dose,numeric,LogisticNormalMixture,Samples-method dose,numeric,OneParExpPrior,Samples-method dose,numeric,OneParLogNormalPrior,Samples-method dose,numeric,ProbitLogNormal,Samples-method dose,numeric,ProbitLogNormalRel,Samples-method dose-DualEndpoint dose-EffFlexi dose-Effloglog-noSamples dose-LogisticIndepBeta dose-LogisticIndepBeta-noSamples dose-LogisticKadane dose-LogisticKadaneBetaGamma dose-LogisticLogNormal dose-LogisticLogNormalGrouped dose-LogisticLogNormalMixture dose-LogisticLogNormalOrdinal dose-LogisticLogNormalSub dose-LogisticNormal dose-LogisticNormalFixedMixture dose-LogisticNormalMixture dose-OneParExpPrior dose-OneParLogNormalPrior dose-ProbitLogNormal dose-ProbitLogNormalRel
Getting the Dose Grid Rangedose_grid_range dose_grid_range,Data-method dose_grid_range,DataOrdinal-method dose_grid_range-Data
Getting the Dose Function for a Given Model TypedoseFunction doseFunction,GeneralModel-method doseFunction,LogisticLogNormalOrdinal-method doseFunction,ModelPseudo-method doseFunction-GeneralModel doseFunction-LogisticLogNormalOrdinal doseFunction-ModelPseudo
'DualDesign'.DefaultDualDesign .DualDesign DualDesign DualDesign-class
'DualEndpoint'.DefaultDualEndpoint .DualEndpoint DualEndpoint DualEndpoint-class
'DualEndpointBeta'.DefaultDualEndpointBeta .DualEndpointBeta DualEndpointBeta DualEndpointBeta-class
'DualEndpointEmax'.DefaultDualEndpointEmax .DualEndpointEmax DualEndpointEmax DualEndpointEmax-class
'DualEndpointRW'.DefaultDualEndpointRW .DualEndpointRW DualEndpointRW DualEndpointRW-class
'DualResponsesDesign.R'.DefaultDualResponsesDesign .DualResponsesDesign DualResponsesDesign DualResponsesDesign-class
'DualResponsesSamplesDesign'.DefaultDualResponsesSamplesDesign .DualResponsesSamplesDesign DualResponsesSamplesDesign DualResponsesSamplesDesign-class
'DualSimulations'.DefaultDualSimulations .DualSimulations DualSimulations DualSimulations-class
'DualSimulationsSummary'.DefaultDualSimulationsSummary .DualSimulationsSummary DualSimulationsSummary DualSimulationsSummary-class
'EffFlexi'.DefaultEffFlexi .EffFlexi EffFlexi EffFlexi-class
Computing Expected Efficacy for a Given Dose, Model and Samplesefficacy efficacy,numeric,EffFlexi,Samples-method efficacy,numeric,Effloglog,missing-method efficacy,numeric,Effloglog,Samples-method efficacy-EffFlexi efficacy-Effloglog efficacy-Effloglog-noSamples
Getting the Efficacy Function for a Given Model TypeefficacyFunction efficacyFunction,ModelEff-method efficacyFunction-ModelEff
'Effloglog'.DefaultEffloglog .Effloglog Effloglog Effloglog-class
Verbose Loggingdisable_logging enable_logging is_logging_enabled log_trace
Obtain hypothetical trial course table for a designexamine examine,DADesign-method examine,Design-method examine,RuleDesign-method
Fit method for the Samples classfit fit,Samples,DualEndpoint,DataDual-method fit,Samples,EffFlexi,DataDual-method fit,Samples,Effloglog,DataDual-method fit,Samples,GeneralModel,Data-method fit,Samples,LogisticIndepBeta,Data-method fit,Samples,LogisticLogNormalOrdinal,DataOrdinal-method
Get the fitted values for the gain values at all dose levels based on a given pseudo DLE model, DLE sample, a pseudo efficacy model, a Efficacy sample and data. This method returns a data frame with dose, middle, lower and upper quantiles of the gain value samplesfitGain fitGain,ModelTox,Samples,ModelEff,Samples,DataDual-method
Get the fitted DLT free survival (piecewise exponential model). This function returns a data frame with dose, middle, lower and upper quantiles for the 'PEM' curve. If hazard=TRUE,fitPEM fitPEM,Samples,DALogisticLogNormal,DataDA-method
'FractionalCRM'.DefaultFractionalCRM .FractionalCRM FractionalCRM FractionalCRM-class
Compute Gain Values based on Pseudo DLE and a Pseudo Efficacy Models and Using Optional Samples.gain gain,numeric,ModelTox,missing,Effloglog,missing-method gain,numeric,ModelTox,Samples,ModelEff,Samples-method gain-ModelTox-Effloglog-noSamples gain-ModelTox-ModelEff
'GeneralData'.DefaultDataGeneral .GeneralData GeneralData GeneralData-class
'GeneralModel'.DefaultGeneralModel .GeneralModel GeneralModel GeneralModel-class
'GeneralSimulations' @description *[Stable]* This class captures trial simulations. Here also the random generator state before starting the simulation is saved, in order to be able to reproduce the outcome. For this just use 'set.seed' with the 'seed' as argument before running 'simulate,Design-method'..DefaultGeneralSimulations .GeneralSimulations GeneralSimulations GeneralSimulations-class
'GeneralSimulationsSummary'.DefaultGeneralSimulationsSummary .DefaultPseudoSimulationsSummary .GeneralSimulationsSummary GeneralSimulationsSummary GeneralSimulationsSummary-class
Get specific parameter samples and produce a data.frameget,Samples,character-method
Extracting Efficacy Responses for Subjects Categorized by the DLTgetEff getEff,DataDual-method getEff-DataDual
Comparison with Numerical Tolerance and Without Name Comparisonh_all_equivalent
Helper Function to Blind Plot Datah_blind_plot_data
Helper function to calculate percentage of true stopping rules for report label output calculates true column means and converts output into percentages before combining the output with the report label; output is passed to 'show()' and output with cat to consoleh_calc_report_label_percentage
Checking Formals of a Functionh_check_fun_formals
Convert a Ordinal Data to the Equivalent Binary Data for a Specific Gradeh_convert_ordinal_data
Convert an ordinal CRM model to the Equivalent Binary CRM Model for a Specific Gradeh_convert_ordinal_model
Convert a Samples Object from an ordinal Model to the Equivalent Samples Object from a Binary Modelh_convert_ordinal_samples
Getting the default value for an empty objecth_default_if_empty
Find Interval Numbers or Indices and Return Custom Number For 0.h_find_interval
Conditional Formatting Using C-style Formatsh_format_number
Check which elements are in a given rangeh_in_range
Calculating the Information Theoretic Distanceh_info_theory_dist
Testing Matrix for Positive Definitenessh_is_positive_definite
Appending a Dummy Number for Selected Slots in Datah_jags_add_dummy
Extracting Samples from 'JAGS' 'mcarray' Objecth_jags_extract_samples
Getting Data for 'JAGS'h_jags_get_data
Setting Initial Values for 'JAGS' Model Parametersh_jags_get_model_inits
Joining 'JAGS' Modelsh_jags_join_models
Writing JAGS Model to a Fileh_jags_write_model
Update certain components of 'DualEndpoint' model with regard to parameters of the function that models dose-biomarker relationship defined in the 'DualEndpointBeta' class.h_model_dual_endpoint_beta
Update 'DualEndpoint' class model components with regard to DLT and biomarker correlation.h_model_dual_endpoint_rho
Update certain components of 'DualEndpoint' model with regard to prior variance factor of the random walk.h_model_dual_endpoint_sigma2betaW
Update 'DualEndpoint' class model components with regard to biomarker regression variance.h_model_dual_endpoint_sigma2W
Get Eligible Doses from the Dose Grid.h_next_best_eligible_doses
Credibility Intervals for Max Gain and Target Doses at 'nextBest-NextBestMaxGain' Method.h_next_best_mg_ci
Get Closest Grid Doses for a Given Target Doses for 'nextBest-NextBestMaxGain' Method.h_next_best_mg_doses_at_grid
Building the Plot for 'nextBest-NextBestMaxGain' Method.h_next_best_mg_plot
Building the Plot for 'nextBest-NextBestMaxGainSamples' Method.h_next_best_mgsamples_plot
Building the Plot for 'nextBest-NextBestNCRMLoss' Method.h_next_best_ncrm_loss_plot
Building the Plot for 'nextBest-NextBestTD' Method.h_next_best_td_plot
Building the Plot for 'nextBest-NextBestTDsamples' Method.h_next_best_tdsamples_plot
Getting 'NULL' for 'NA'h_null_if_na
Helper Function Containing Common Functionalityh_obtain_dose_grid_range
Preparing Cohort Lines for Data Ploth_plot_data_cohort_lines
Helper Function for the Plot Method of the Data and DataOrdinal Classesh_plot_data_dataordinal plot,Data,missing-method plot,DataOrdinal,missing-method plot-Data
Preparing Data for Plottingh_plot_data_df h_plot_data_df,Data-method h_plot_data_df,DataOrdinal-method
Recursively Apply a Function to a Listh_rapply
Getting the Slots from a S4 Objecth_slots
Helper function to calculate average across iterations for each additional reporting parameter extracts parameter names as specified by user and averaged the values for each specified parameter to 'show()' and output with cat to consoleh_summarize_add_stats
Check that an argument is a named vector of type numerich_test_named_numeric
Helper function to recursively unpack stopping rules and return lists with logical value and label givenh_unpack_stopit
Combining S4 Class Validation Resultsh_validate_combine_results
Helper Function performing validation Common to Data and DataOrdinalh_validate_common_data_slots
'Increments'.DefaultIncrements Increments Increments-class
'IncrementsDoseLevels'.DefaultIncrementsDoseLevels .IncrementsDoseLevels IncrementsDoseLevels IncrementsDoseLevels-class
'IncrementsHSRBeta'.DefaultIncrementsHSRBeta .IncrementsHSRBeta IncrementsHSRBeta IncrementsHSRBeta-class
'IncrementsMaxToxProb'.DefaultIncrementsMaxToxProb .IncrementsMaxToxProb IncrementsMaxToxProb IncrementsMaxToxProb-class
'IncrementsMin'.DefaultIncrementsMin .IncrementsMin IncrementsMin IncrementsMin-class
'IncrementsOrdinal'.DefaultIncrementsOrdinal .IncrementsOrdinal IncrementsOrdinal IncrementsOrdinal-class
'IncrementsRelative'.DefaultIncrementsRelative .IncrementsRelative IncrementsRelative IncrementsRelative-class
'IncrementsRelativeDLT'.DefaultIncrementsRelativeDLT .IncrementsRelativeDLT IncrementsRelativeDLT IncrementsRelativeDLT-class
'IncrementsRelativeDLTCurrent'.DefaultIncrementsRelativeDLTCurrent .IncrementsRelativeDLTCurrent IncrementsRelativeDLTCurrent IncrementsRelativeDLTCurrent-class
'IncrementsRelativeParts'.DefaultIncrementsRelativeParts .IncrementsRelativeParts IncrementsRelativeParts IncrementsRelativeParts-class
Render a 'CohortSizeConst' Objectknit_print knit_print.CohortSizeConst knit_print.CohortSizeDLT knit_print.CohortSizeMax knit_print.CohortSizeMin knit_print.CohortSizeOrdinal knit_print.CohortSizeParts knit_print.CohortSizeRange knit_print.DADesign knit_print.DataParts knit_print.Design knit_print.DesignGrouped knit_print.DesignOrdinal knit_print.DualDesign knit_print.DualEndpoint knit_print.DualResponsesDesign knit_print.DualResponsesSamplesDesign knit_print.Effloglog knit_print.GeneralData knit_print.GeneralModel knit_print.IncrementsDoseLevels knit_print.IncrementsHSRBeta knit_print.IncrementsMin knit_print.IncrementsOrdinal knit_print.IncrementsRelative knit_print.IncrementsRelativeDLT knit_print.IncrementsRelativeDLTCurrent knit_print.IncrementsRelativeParts knit_print.LogisticIndepBeta knit_print.LogisticKadane knit_print.LogisticKadaneBetaGamma knit_print.LogisticLogNormal knit_print.LogisticLogNormalGrouped knit_print.LogisticLogNormalMixture knit_print.LogisticLogNormalOrdinal knit_print.LogisticLogNormalSub knit_print.LogisticNormalFixedMixture knit_print.LogisticNormalMixture knit_print.ModelParamsNormal knit_print.NextBestDualEndpoint knit_print.NextBestInfTheory knit_print.NextBestMaxGain knit_print.NextBestMaxGainSamples knit_print.NextBestMinDist knit_print.NextBestMTD knit_print.NextBestNCRM knit_print.NextBestNCRMLoss knit_print.NextBestOrdinal knit_print.NextBestProbMTDLTE knit_print.NextBestProbMTDMinDist knit_print.NextBestTD knit_print.NextBestTDsamples knit_print.NextBestThreePlusThree knit_print.OneParExpPrior knit_print.OneParLogNormalPrior knit_print.RuleDesign knit_print.RuleDesignOrdinal knit_print.SafetyWindow knit_print.SafetyWindowConst knit_print.SafetyWindowSize knit_print.StartingDose knit_print.StoppingAll knit_print.StoppingAny knit_print.StoppingCohortsNearDose knit_print.StoppingHighestDose knit_print.StoppingList knit_print.StoppingLowestDoseHSRBeta knit_print.StoppingMaxGainCIRatio knit_print.StoppingMinCohorts knit_print.StoppingMinPatients knit_print.StoppingMissingDose knit_print.StoppingMTDCV knit_print.StoppingMTDdistribution knit_print.StoppingOrdinal knit_print.StoppingPatientsNearDose knit_print.StoppingSpecificDose knit_print.StoppingTargetBiomarker knit_print.StoppingTargetProb knit_print.StoppingTDCIRatio knit_print.TDDesign knit_print.TDsamplesDesign
'LogisticIndepBeta'.DefaultLogisticIndepBeta .LogisticIndepBeta LogisticIndepBeta LogisticIndepBeta-class
'LogisticKadane'.DefaultLogisticKadane .LogisticKadane LogisticKadane LogisticKadane-class
'LogisticKadaneBetaGamma'.DefaultLogisticKadaneBetaGamma .LogisticKadaneBetaGamma LogisticKadaneBetaGamma LogisticKadaneBetaGamma-class
'LogisticLogNormal'.DefaultLogisticLogNormal .LogisticLogNormal LogisticLogNormal LogisticLogNormal-class
'LogisticLogNormalGrouped'.DefaultLogisticLogNormalGrouped .LogisticLogNormalGrouped LogisticLogNormalGrouped LogisticLogNormalGrouped-class
'LogisticLogNormalMixture'.DefaultLogisticLogNormalMixture .LogisticLogNormalMixture LogisticLogNormalMixture LogisticLogNormalMixture-class
'LogisticLogNormalOrdinal'.DefaultLogisticLogNormalOrdinal .LogisticLogNormalOrdinal LogisticLogNormalOrdinal LogisticLogNormalOrdinal-class
'LogisticLogNormalSub'.DefaultLogisticLogNormalSub .LogisticLogNormalSub LogisticLogNormalSub LogisticLogNormalSub-class
'LogisticNormal'.DefaultLogisticNormal .LogisticNormal LogisticNormal LogisticNormal-class
'LogisticNormalFixedMixture'.DefaultLogisticNormalFixedMixture .LogisticNormalFixedMixture LogisticNormalFixedMixture LogisticNormalFixedMixture-class
'LogisticNormalMixture'.DefaultLogisticNormalMixture .LogisticNormalMixture LogisticNormalMixture LogisticNormalMixture-class
Shorthand for logit functionlogit
Helper function for value matching with tolerancematch_within_tolerance
Determine the Maximum Possible Next DosemaxDose maxDose,IncrementsDoseLevels,Data-method maxDose,IncrementsHSRBeta,Data-method maxDose,IncrementsMaxToxProb,Data-method maxDose,IncrementsMaxToxProb,DataOrdinal-method maxDose,IncrementsMin,Data-method maxDose,IncrementsMin,DataOrdinal-method maxDose,IncrementsOrdinal,DataOrdinal-method maxDose,IncrementsRelative,Data-method maxDose,IncrementsRelativeDLT,Data-method maxDose,IncrementsRelativeDLTCurrent,Data-method maxDose,IncrementsRelativeParts,DataParts-method maxDose-IncrementsDoseLevels maxDose-IncrementsHSRBeta maxDose-IncrementsMaxToxProb maxDose-IncrementsMin maxDose-IncrementsOrdinal maxDose-IncrementsRelative maxDose-IncrementsRelativeDLT maxDose-IncrementsRelativeDLTCurrent maxDose-IncrementsRelativeParts
"MAX" combination of cohort size rulesmaxSize maxSize,CohortSize-method
Obtaining Posterior Samples for all Model Parametersmcmc mcmc,Data,LogisticIndepBeta,McmcOptions-method mcmc,DataDual,EffFlexi,McmcOptions-method mcmc,DataDual,Effloglog,McmcOptions-method mcmc,DataMixture,GeneralModel,McmcOptions-method mcmc,DataOrdinal,LogisticLogNormalOrdinal,McmcOptions-method mcmc,GeneralData,DualEndpointBeta,McmcOptions-method mcmc,GeneralData,DualEndpointEmax,McmcOptions-method mcmc,GeneralData,DualEndpointRW,McmcOptions-method mcmc,GeneralData,GeneralModel,McmcOptions-method mcmc,GeneralData,OneParExpPrior,McmcOptions-method mcmc,GeneralData,OneParLogNormalPrior,McmcOptions-method mcmc-GeneralData mcmc-GeneralData-DualEndpointBeta mcmc-GeneralData-DualEndpointEmax mcmc-GeneralData-DualEndpointRW mcmc-GeneralData-OneParExpPrior mcmc-GeneralData-OneParLogNormalPrior
'McmcOptions'.DefaultMcmcOptions .McmcOptions McmcOptions McmcOptions-class
Construct a minimally informative priorMinimalInformative
"MIN" combination of cohort size rulesminSize minSize,CohortSize-method
'ModelEff'.DefaultModelEff .ModelEff ModelEff ModelEff-class
'ModelLogNormal'.DefaultModelLogNormal .ModelLogNormal ModelLogNormal ModelLogNormal-class
'ModelParamsNormal'.DefaultModelParamsNormal .ModelParamsNormal ModelParamsNormal ModelParamsNormal-class
'ModelPseudo'.DefaultModelPseudo .ModelPseudo ModelPseudo ModelPseudo-class
'ModelTox'.DefaultModelTox .ModelTox ModelTox ModelTox-class
The Names of the Sampled Parametersnames,Samples-method names-Samples
Finding the Next Best DosenextBest nextBest,NextBestDualEndpoint,numeric,Samples,DualEndpoint,Data-method nextBest,NextBestInfTheory,numeric,Samples,GeneralModel,Data-method nextBest,NextBestMaxGain,numeric,missing,ModelTox,DataDual-method nextBest,NextBestMaxGainSamples,numeric,Samples,ModelTox,DataDual-method nextBest,NextBestMinDist,numeric,Samples,GeneralModel,Data-method nextBest,NextBestMTD,numeric,Samples,GeneralModel,Data-method nextBest,NextBestNCRM,numeric,Samples,GeneralModel,Data-method nextBest,NextBestNCRM,numeric,Samples,GeneralModel,DataParts-method nextBest,NextBestNCRMLoss,numeric,Samples,GeneralModel,Data-method nextBest,NextBestOrdinal,numeric,Samples,GeneralModel,Data-method nextBest,NextBestOrdinal,numeric,Samples,LogisticLogNormalOrdinal,DataOrdinal-method nextBest,NextBestProbMTDLTE,numeric,Samples,GeneralModel,Data-method nextBest,NextBestProbMTDMinDist,numeric,Samples,GeneralModel,Data-method nextBest,NextBestTD,numeric,missing,LogisticIndepBeta,Data-method nextBest,NextBestTDsamples,numeric,Samples,LogisticIndepBeta,Data-method nextBest,NextBestThreePlusThree,missing,missing,missing,Data-method nextBest-NextBestDualEndpoint nextBest-NextBestInfTheory nextBest-NextBestMaxGain nextBest-NextBestMaxGainSamples nextBest-NextBestMinDist nextBest-NextBestMTD nextBest-NextBestNCRM nextBest-NextBestNCRM-DataParts nextBest-NextBestNCRMLoss nextBest-NextBestOrdinal nextBest-NextBestProbMTDLTE nextBest-NextBestProbMTDMinDist nextBest-NextBestTD nextBest-NextBestTDsamples nextBest-NextBestThreePlusThree
'NextBest'.DefaultNextBest NextBest NextBest-class
'NextBestDualEndpoint'.DefaultNextBestDualEndpoint .NextBestDualEndpoint NextBestDualEndpoint NextBestDualEndpoint-class
'NextBestInfTheory'.DefaultNextBestInfTheory .NextBestInfTheory NextBestInfTheory NextBestInfTheory-class
'NextBestMaxGain'.DefaultNextBestMaxGain .NextBestMaxGain NextBestMaxGain NextBestMaxGain-class
'NextBestMaxGainSamples'.DefaultNextBestMaxGainSamples .NextBestMaxGainSamples NextBestMaxGainSamples NextBestMaxGainSamples-class
'NextBestMinDist'.DefaultNextBestMinDist .NextBestMinDist NextBestMinDist NextBestMinDist-class
'NextBestMTD'.DefaultNextBestMTD .NextBestMTD NextBestMTD NextBestMTD-class
'NextBestNCRM'.DefaultNextBestNCRM .NextBestNCRM NextBestNCRM NextBestNCRM-class
'NextBestNCRMLoss'.DefaultNextBestNCRMLoss .NextBestNCRMLoss NextBestNCRMLoss NextBestNCRMLoss-class
'NextBestOrdinal'.DefaultNextBestOrdinal .NextBestOrdinal NextBestOrdinal NextBestOrdinal-class
'NextBestProbMTDLTE'.DefaultNextBestProbMTDLTE .NextBestProbMTDLTE NextBestProbMTDLTE NextBestProbMTDLTE-class
'NextBestProbMTDMinDist'.DefaultNextBestProbMTDMinDist .NextBestProbMTDMinDist NextBestProbMTDMinDist NextBestProbMTDMinDist-class
'NextBestTD'.DefaultNextBestTD .NextBestTD NextBestTD NextBestTD-class
'NextBestTDsamples'.DefaultNextBestTDsamples .NextBestTDsamples NextBestTDsamples NextBestTDsamples-class
'NextBestThreePlusThree'.DefaultNextBestThreePlusThree .NextBestThreePlusThree NextBestThreePlusThree NextBestThreePlusThree-class
Number of Doses in Gridngrid ngrid,Data-method ngrid-Data
'OneParExpPrior'.DefaultOneParExpPrior .OneParExpPrior OneParExpPrior OneParExpPrior-class
'OneParLogNormalPrior'.DefaultOneParLogNormalPrior .OneParLogNormalPrior OneParLogNormalPrior OneParLogNormalPrior-class
The method combining two atomic stopping rulesor-Stopping-Stopping |,Stopping,Stopping-method
The method combining a stopping list and an atomicor-Stopping-StoppingAny |,StoppingAny,Stopping-method
The method combining an atomic and a stopping listor-StoppingAny-Stopping |,Stopping,StoppingAny-method
Plot of the fitted dose-tox based with a given pseudo DLE model and data without samplesplot,Data,ModelTox-method
Plot Method for the 'DataDA' Classplot,DataDA,missing-method plot-DataDA
Plot Method for the 'DataDual' Classplot,DataDual,missing-method plot-DataDual
Plot of the fitted dose-efficacy based with a given pseudo efficacy model and data without samplesplot,DataDual,ModelEff-method
Plot dual-endpoint simulationsplot,DualSimulations,missing-method
Plot summaries of the dual-endpoint design simulationsplot,DualSimulationsSummary,missing-method
Plot simulationsplot,GeneralSimulations,missing-method
Graphical display of the general simulation summaryplot,GeneralSimulationsSummary,missing-method
This plot method can be applied to 'PseudoDualFlexiSimulations' objects in order to summarize them graphically. Possible 'type's of plots at the moment are: trajectory Summary of the trajectory of the simulated trials dosesTried Average proportions of the doses tested in patients sigma2 The variance of the efficacy responses sigma2betaW The variance of the random walk model You can specify one or both of these in the 'type' argument.plot,PseudoDualFlexiSimulations,missing-method
Plot simulationsplot,PseudoDualSimulations,missing-method
Plot the summary of Pseudo Dual Simulations summaryplot,PseudoDualSimulationsSummary,missing-method
Plot summaries of the pseudo simulationsplot,PseudoSimulationsSummary,missing-method
Plotting dose-toxicity model fitsplot,Samples,DALogisticLogNormal-method
Plotting dose-toxicity and dose-biomarker model fitsplot,Samples,DualEndpoint-method
Plotting dose-toxicity model fitsplot,Samples,GeneralModel-method
Plot the fitted dose-efficacy curve using a model from 'ModelEff' class with samplesplot,Samples,ModelEff-method
Plot the fitted dose-DLE curve using a 'ModelTox' class model with samplesplot,Samples,ModelTox-method
Plot summaries of the model-based design simulationsplot,SimulationsSummary,missing-method
Plot 'gtable' Objectsplot.gtable print.gtable
Plot of the DLE and efficacy curve side by side given a DLE pseudo model, a DLE sample, an efficacy pseudo model and a given efficacy sampleplotDualResponses plotDualResponses,ModelTox,missing,ModelEff,missing-method plotDualResponses,ModelTox,Samples,ModelEff,Samples-method
Plot the gain curve in addition with the dose-DLE and dose-efficacy curve using a given DLE pseudo model, a DLE sample, a given efficacy pseudo model and an efficacy sampleplotGain plotGain,ModelTox,missing,ModelEff,missing-method plotGain,ModelTox,Samples,ModelEff,Samples-method
'positive_number'positive_number
Computing Toxicity Probabilities for a Given Dose, Model and Samplesprob prob,numeric,DualEndpoint,Samples-method prob,numeric,LogisticIndepBeta,missing-method prob,numeric,LogisticIndepBeta,Samples-method prob,numeric,LogisticKadane,Samples-method prob,numeric,LogisticKadaneBetaGamma,Samples-method prob,numeric,LogisticLogNormal,Samples-method prob,numeric,LogisticLogNormalGrouped,Samples-method prob,numeric,LogisticLogNormalMixture,Samples-method prob,numeric,LogisticLogNormalOrdinal,Samples-method prob,numeric,LogisticLogNormalSub,Samples-method prob,numeric,LogisticNormal,Samples-method prob,numeric,LogisticNormalFixedMixture,Samples-method prob,numeric,LogisticNormalMixture,Samples-method prob,numeric,OneParExpPrior,Samples-method prob,numeric,OneParLogNormalPrior,Samples-method prob,numeric,ProbitLogNormal,Samples-method prob,numeric,ProbitLogNormalRel,Samples-method prob-DualEndpoint prob-LogisticIndepBeta prob-LogisticIndepBeta-noSamples prob-LogisticKadane prob-LogisticKadaneBetaGamma prob-LogisticLogNormal prob-LogisticLogNormalGrouped prob-LogisticLogNormalMixture prob-LogisticLogNormalOrdinal prob-LogisticLogNormalSub prob-LogisticNormal prob-LogisticNormalFixedMixture prob-LogisticNormalMixture prob-OneParExpPrior prob-OneParLogNormalPrior prob-ProbitLogNormal prob-ProbitLogNormalRel
Getting the Prob Function for a Given Model TypeprobFunction probFunction,GeneralModel-method probFunction,LogisticLogNormalOrdinal-method probFunction,ModelTox-method probFunction-GeneralModel probFunction-LogisticLogNormalOrdinal probFunction-ModelTox
Shorthand for probit functionprobit
'ProbitLogNormal'.DefaultProbitLogNormal .ProbitLogNormal ProbitLogNormal ProbitLogNormal-class ProbitLogNormalLogDose
'ProbitLogNormalRel'.DefaultProbitLogNormalRel .ProbitLogNormalRel ProbitLogNormalRel ProbitLogNormalRel-class
Initialization function for 'PseudoDualFlexiSimulations' classPseudoDualFlexiSimulations
This is a class which captures the trial simulations design using both the DLE and efficacy responses. The design of model from 'ModelTox' class and the efficacy model from 'EffFlexi' class It contains all slots from 'GeneralSimulations', 'PseudoSimulations' and 'PseudoDualSimulations' object. In comparison to the parent class 'PseudoDualSimulations', it contains additional slots to capture the sigma2betaW estimates..DefaultPseudoDualFlexiSimulations .PseudoDualFlexiSimulations PseudoDualFlexiSimulations-class
'PseudoDualSimulations'.DefaultPseudoDualSimulations .PseudoDualSimulations PseudoDualSimulations PseudoDualSimulations-class
Class for the summary of the dual responses simulations using pseudo models.DefaultPseudoDualSimulationsSummary .PseudoDualSimulationsSummary PseudoDualSimulationsSummary-class
'PseudoSimulations'.DefaultPseudoSimulations .PseudoSimulations PseudoSimulations PseudoSimulations-class
Class for the summary of pseudo-models simulations output.PseudoSimulationsSummary PseudoSimulationsSummary-class
Convert prior quantiles (lower, median, upper) to logistic (log) normal modelQuantiles2LogisticNormal
A Reference Class to represent sequentially updated reporting objects.Report
'RuleDesign'.DefaultRuleDesign .RuleDesign RuleDesign RuleDesign-class ThreePlusThreeDesign
'RuleDesignOrdinal'.DefaultRuleDesignOrdinal .RuleDesignOrdinal RuleDesignOrdinal RuleDesignOrdinal-class
'SafetyWindow'.DefaultSafetyWindow SafetyWindow SafetyWindow-class
'SafetyWindowConst'.DefaultSafetyWindowConst .SafetyWindowConst SafetyWindowConst SafetyWindowConst-class
'SafetyWindowSize'.DefaultSafetyWindowSize .SafetyWindowSize SafetyWindowSize SafetyWindowSize-class
'Samples'.DefaultSamples .Samples Samples Samples-class
Determining if this Sample Should be SavedsaveSample saveSample,McmcOptions-method saveSample-McmcOptions
Helper Function to Set and Save the RNG Seedset_seed
Show the summary of the dual-endpoint simulationsshow,DualSimulationsSummary-method
Show the summary of the simulationsshow,GeneralSimulationsSummary-method
Show the summary of Pseudo Dual simulations summaryshow,PseudoDualSimulationsSummary-method
Show the summary of the simulationsshow,PseudoSimulationsSummary-method
Show the summary of the simulationsshow,SimulationsSummary-method
Simulate outcomes from a time-to-DLT augmented CRM design ('DADesign')simulate,DADesign-method
Simulate outcomes from a CRM designsimulate,Design-method
Simulate Method for the 'DesignGrouped' Classsimulate,DesignGrouped-method simulate-DesignGrouped
Simulate outcomes from a dual-endpoint designsimulate,DualDesign-method
This is a methods to simulate dose escalation procedure using both DLE and efficacy responses. This is a method based on the 'DualResponsesDesign' where DLEmodel used are of 'ModelTox' class object and efficacy model used are of 'ModelEff' class object. In addition, no DLE and efficacy samples are involved or generated in the simulation processsimulate,DualResponsesDesign-method
This is a methods to simulate dose escalation procedure using both DLE and efficacy responses. This is a method based on the 'DualResponsesSamplesDesign' where DLEmodel used are of 'ModelTox' class object and efficacy model used are of 'ModelEff' class object (special case is 'EffFlexi' class model object). In addition, DLE and efficacy samples are involved or generated in the simulation processsimulate,DualResponsesSamplesDesign-method
Simulate outcomes from a rule-based designsimulate,RuleDesign-method
This is a methods to simulate dose escalation procedure only using the DLE responses. This is a method based on the 'TDDesign' where model used are of 'ModelTox' class object and no samples are involved.simulate,TDDesign-method
This is a methods to simulate dose escalation procedure only using the DLE responses. This is a method based on the 'TDsamplesDesign' where model used are of 'ModelTox' class object DLE samples are also usedsimulate,TDsamplesDesign-method
'Simulations'.DefaultSimulations .Simulations Simulations Simulations-class
'SimulationsSummary'.DefaultSimulationsSummary .SimulationsSummary SimulationsSummary SimulationsSummary-class
Size of an Objectsize size,CohortSizeConst-method size,CohortSizeDLT-method size,CohortSizeMax-method size,CohortSizeMin-method size,CohortSizeOrdinal-method size,CohortSizeParts-method size,CohortSizeRange-method size,McmcOptions-method size,Samples-method size-CohortSizeConst size-CohortSizeDLT size-CohortSizeMax size-CohortSizeMin size-CohortSizeOrdinal size-CohortSizeParts size-CohortSizeRange size-McmcOptions size-Samples
'Stopping'Stopping Stopping-class
'StoppingAll'.DefaultStoppingAll .StoppingAll StoppingAll StoppingAll-class
'StoppingAny'.DefaultStoppingAny .StoppingAny StoppingAny StoppingAny-class
'StoppingCohortsNearDose'.DefaultStoppingCohortsNearDose .StoppingCohortsNearDose StoppingCohortsNearDose StoppingCohortsNearDose-class
'StoppingExternal'.DefaultStoppingExternal .StoppingExternal StoppingExternal StoppingExternal-class
'StoppingHighestDose'.DefaultStoppingHighestDose .StoppingHighestDose StoppingHighestDose StoppingHighestDose-class
'StoppingList'.DefaultStoppingList .StoppingList StoppingList StoppingList-class
'StoppingLowestDoseHSRBeta'.DefaultStoppingLowestDoseHSRBeta .StoppingLowestDoseHSRBeta StoppingLowestDoseHSRBeta StoppingLowestDoseHSRBeta-class
'StoppingMaxGainCIRatio'.DefaultStoppingMaxGainCIRatio .StoppingMaxGainCIRatio StoppingMaxGainCIRatio StoppingMaxGainCIRatio-class
'StoppingMinCohorts'.DefaultStoppingMinCohorts .StoppingMinCohorts StoppingMinCohorts StoppingMinCohorts-class
'StoppingMinPatients'.DefaultStoppingMinPatients .StoppingMinPatients StoppingMinPatients StoppingMinPatients-class
'StoppingMissingDose'.DefaultStoppingMissingDose .StoppingMissingDose StoppingMissingDose StoppingMissingDose-class
'StoppingMTDCV'.DefaultStoppingMTDCV .StoppingMTDCV StoppingMTDCV StoppingMTDCV-class
'StoppingMTDdistribution'.DefaultStoppingMTDdistribution .StoppingMTDdistribution StoppingMTDdistribution StoppingMTDdistribution-class
'StoppingOrdinal'.DefaultStoppingOrdinal .StoppingOrdinal StoppingOrdinal StoppingOrdinal-class
'StoppingPatientsNearDose'.DefaultStoppingPatientsNearDose .StoppingPatientsNearDose StoppingPatientsNearDose StoppingPatientsNearDose-class
'StoppingSpecificDose'.DefaultStoppingSpecificDose .StoppingSpecificDose StoppingSpecificDose StoppingSpecificDose-class
'StoppingTargetBiomarker'.DefaultStoppingTargetBiomarker .StoppingTargetBiomarker StoppingTargetBiomarker StoppingTargetBiomarker-class
'StoppingTargetProb'.DefaultStoppingTargetProb .StoppingTargetProb StoppingTargetProb StoppingTargetProb-class
'StoppingTDCIRatio'.DefaultStoppingTDCIRatio .StoppingTDCIRatio StoppingTDCIRatio StoppingTDCIRatio-class
Stop the trial?stopTrial stopTrial,StoppingAll,ANY,ANY,ANY,ANY-method stopTrial,StoppingAny,ANY,ANY,ANY,ANY-method stopTrial,StoppingCohortsNearDose,numeric,ANY,ANY,Data-method stopTrial,StoppingExternal,numeric,ANY,ANY,ANY-method stopTrial,StoppingHighestDose,numeric,ANY,ANY,Data-method stopTrial,StoppingList,ANY,ANY,ANY,ANY-method stopTrial,StoppingLowestDoseHSRBeta,numeric,Samples,ANY,ANY-method stopTrial,StoppingMaxGainCIRatio,ANY,missing,ModelTox,DataDual-method stopTrial,StoppingMaxGainCIRatio,ANY,Samples,ModelTox,DataDual-method stopTrial,StoppingMinCohorts,ANY,ANY,ANY,Data-method stopTrial,StoppingMinPatients,ANY,ANY,ANY,Data-method stopTrial,StoppingMissingDose,numeric,ANY,ANY,Data-method stopTrial,StoppingMTDCV,numeric,Samples,GeneralModel,ANY-method stopTrial,StoppingMTDdistribution,numeric,Samples,GeneralModel,ANY-method stopTrial,StoppingOrdinal,numeric,ANY,ANY,ANY-method stopTrial,StoppingOrdinal,numeric,ANY,LogisticLogNormalOrdinal,DataOrdinal-method stopTrial,StoppingPatientsNearDose,numeric,ANY,ANY,Data-method stopTrial,StoppingSpecificDose,numeric,ANY,ANY,Data-method stopTrial,StoppingTargetBiomarker,numeric,Samples,DualEndpoint,ANY-method stopTrial,StoppingTargetProb,numeric,Samples,GeneralModel,ANY-method stopTrial,StoppingTDCIRatio,ANY,missing,ModelTox,ANY-method stopTrial,StoppingTDCIRatio,ANY,Samples,ModelTox,ANY-method stopTrial-StoppingExternal stopTrial-StoppingLowestDoseHSRBeta stopTrial-StoppingMissingDose stopTrial-StoppingMTDCV stopTrial-StoppingOrdinal stopTrial-StoppingSpecificDose stopTrial-StoppingTargetBiomarker stopTrial-StoppingTargetProb
Summarize the dual-endpoint design simulations, relative to given true dose-toxicity and dose-biomarker curvessummary,DualSimulations-method
Summarize the simulations, relative to a given truthsummary,GeneralSimulations-method
Summary for Pseudo Dual responses simulations given a pseudo DLE model and the Flexible efficacy model.summary,PseudoDualFlexiSimulations-method
Summary for Pseudo Dual responses simulations, relative to a given pseudo DLE and efficacy model (except the EffFlexi class model)summary,PseudoDualSimulations-method
Summarize the simulations, relative to a given truthsummary,PseudoSimulations-method
Summarize the model-based design simulations, relative to a given truthsummary,Simulations-method
'TDDesign'.DefaultTDDesign .TDDesign TDDesign TDDesign-class
'TDsamplesDesign'.DefaultTDsamplesDesign .TDsamplesDesign TDsamplesDesign TDsamplesDesign-class
Tidying 'CrmPackClass' objectstidy tidy,CohortSizeDLT-method tidy,CohortSizeMax-method tidy,CohortSizeMin-method tidy,CohortSizeParts-method tidy,CohortSizeRange-method tidy,CrmPackClass-method tidy,DataDA-method tidy,DataDual-method tidy,DataGrouped-method tidy,DataMixture-method tidy,DataOrdinal-method tidy,DataParts-method tidy,DualDesign-method tidy,Effloglog-method tidy,GeneralData-method tidy,IncrementsMaxToxProb-method tidy,IncrementsMin-method tidy,IncrementsRelative-method tidy,IncrementsRelativeDLT-method tidy,IncrementsRelativeParts-method tidy,LogisticIndepBeta-method tidy,NextBestNCRM-method tidy,NextBestNCRMLoss-method tidy,Samples-method tidy,Simulations-method tidy-CohortSizeDLT tidy-CohortSizeMax tidy-CohortSizeMin tidy-CohortSizeParts tidy-CohortSizeRange tidy-CrmPackClass tidy-DataDA tidy-DataDual tidy-DataGrouped tidy-DataMixture tidy-DataOrdinal tidy-DataParts tidy-DualDesign tidy-Effloglog tidy-GeneralData tidy-IncrementsMaxToxProb tidy-IncrementsMin tidy-IncrementsRelative tidy-IncrementsRelativeDLT tidy-IncrementsRelativeParts tidy-LogisticIndepBeta tidy-NextBestNCRM tidy-NextBestNCRMLoss tidy-Samples tidy-Simulations
'TITELogisticLogNormal'.DefaultTITELogisticLogNormal .TITELogisticLogNormal TITELogisticLogNormal TITELogisticLogNormal-class
Updating 'Data' Objectsupdate,Data-method update-Data
Updating 'DataDA' Objectsupdate,DataDA-method update-DataDA
Updating 'DataDual' Objectsupdate,DataDual-method update-DataDual
Updating 'DataOrdinal' Objectsupdate,DataOrdinal-method update-DataOrdinal
Updating 'DataParts' Objectsupdate,DataParts-method update-DataParts
Update method for the 'ModelPseudo' model class. This is a method to update the model class slots (estimates, parameters, variables and etc.), when the new data (e.g. new observations of responses) are available. This method is mostly used to obtain new modal estimates for pseudo model parameters.update,ModelPseudo-method update-ModelPseudo
Internal Helper Functions for Validation of 'CohortSize' Objectsv_cohort_size v_cohort_size_const v_cohort_size_dlt v_cohort_size_max v_cohort_size_parts v_cohort_size_range
Internal Helper Functions for Validation of 'GeneralData' Objectsh_doses_unique_per_cohort v_data v_data_da v_data_dual v_data_grouped v_data_mixture v_data_objects v_data_ordinal v_data_parts v_general_data
Internal Helper Functions for Validation of 'RuleDesign' Objectsv_design v_design_grouped v_rule_design v_rule_design_ordinal
Internal Helper Functions for Validation of 'GeneralSimulations' Objectsv_da_simulations v_dual_simulations v_general_simulations v_simulations
Internal Helper Functions for Validation of 'Increments' Objectsv_cohort_size_ordinal v_increments v_increments_dose_levels v_increments_hsr_beta v_increments_maxtoxprob v_increments_min v_increments_ordinal v_increments_relative v_increments_relative_dlt v_increments_relative_parts
Internal Helper Functions for Validation of 'McmcOptions' Objectsv_mcmcoptions_objects v_mcmc_options
Internal Helper Functions for Validation of 'GeneralModel' and 'ModelPseudo' Objectsv_general_model v_logisticlognormalordinal v_model_da_logistic_log_normal v_model_dual_endpoint v_model_dual_endpoint_beta v_model_dual_endpoint_emax v_model_dual_endpoint_rw v_model_eff_flexi v_model_eff_log_log v_model_logistic_indep_beta v_model_logistic_kadane v_model_logistic_kadane_beta_gamma v_model_logistic_log_normal_mix v_model_logistic_normal_fixed_mix v_model_logistic_normal_mix v_model_objects v_model_one_par_exp_normal_prior v_model_one_par_exp_prior v_model_tite_logistic_log_normal
Internal Helper Functions for Validation of Model Parameters Objectsv_model_params v_model_params_normal
Internal Helper Functions for Validation of 'NextBest' Objectsv_next_best v_next_best_dual_endpoint v_next_best_inf_theory v_next_best_max_gain_samples v_next_best_min_dist v_next_best_mtd v_next_best_ncrm v_next_best_ncrm_loss v_next_best_ordinal v_next_best_prob_mtd_lte v_next_best_prob_mtd_min_dist v_next_best_td v_next_best_td_samples
Internal Helper Functions for Validation of 'PseudoSimulations' Objectsv_pseudo_dual_flex_simulations v_pseudo_dual_simulations v_pseudo_simulations
Internal Helper Functions for Validation of 'SafetyWindow' Objectsv_safety_window v_safety_window_const v_safety_window_size
Internal Helper Functions for Validation of 'Samples' Objectsv_samples v_samples_objects
Internal Helper Functions for Validation of 'Stopping' Objectsv_stopping v_stopping_all v_stopping_cohorts_near_dose v_stopping_list v_stopping_min_cohorts v_stopping_min_patients v_stopping_mtd_cv v_stopping_mtd_distribution v_stopping_patients_near_dose v_stopping_target_biomarker v_stopping_target_prob v_stopping_tdci_ratio
'Validate'Validate
Determine the safety window length of the next cohortwindowLength windowLength,SafetyWindowConst-method windowLength,SafetyWindowSize-method