Title: | Create TLGs using the 'tidyverse' |
---|---|
Description: | Generate tables, listings, and graphs (TLG) using 'tidyverse.' Tables can be created functionally, using a standard TLG process, or by specifying table and column metadata to create generic analysis summaries. The 'envsetup' package can also be leveraged to create environments for table creation. |
Authors: | Nicholas Masel [aut], Steven Haesendonckx [aut], Pelagia Alexandra Papadopoulou [aut], Sheng-Wei Wang [aut], Eli Miller [aut] , Nathan Kosiba [aut] , Aidan Ceney [aut] , Janssen R&D [cph, fnd], David Hugh-Jones [cph] (Author of included huxtable library), Konrad Pagacz [aut, cre] |
Maintainer: | Konrad Pagacz <[email protected]> |
License: | Apache License 2.0 |
Version: | 0.1.5 |
Built: | 2024-12-29 04:37:09 UTC |
Source: | https://github.com/pharmaverse/tidytlg |
Adds bottom borders to a huxtable
add_bottom_borders(ht, border_matrix = no_borders(ht), transform_fns = list())
add_bottom_borders(ht, border_matrix = no_borders(ht), transform_fns = list())
ht |
|
border_matrix |
(optional) |
transform_fns |
(optional)
The functions in the list are applied sequentially to |
Adds bottom borders to a huxtable based on a matrix indicating where the borders should be put.
This function is responsible for adding bottom borders to a huxtable
object.
It supports borders spanning multiple columns and borders that are under neighbouring,
single cells (or merged cells), but separate (see examples).
This feature has limitations. Mainly, it does not support both versions of the borders (continuous and separate) on the same line. In such a case, the borders in the resulting RTF look misaligned.
A huxtable with added borders.
border_matrix
detailsYou mark where the bottom borders should go in the table by passing a matrix.
The matrix has to have the same number of columns as the passed huxtable
and the number of rows lower by one than the passed huxtable
. Each cell
in border_matrix
corresponds to a cell in huxtable
(starting from the first row).
Internally, the function adds the first row of 0s to border_matrix
before the execution.
At that point, border_matrix
's dimensions match ht
's dimensions.
Table:
foo | bar |
baz | bim |
A border matrix:
1 | 1 |
0 | 0 |
The above border matrix puts a bottom border across the entire first row and no borders in the second row.
A border matrix:
1 | 2 |
0 | 0 |
The above border matrix puts one border under the first cell in the first row; and another border (separate from the first one) under the second cell in the first row. The second row stays without any borders.
The below functions can be passed to gentlg()
's
border_fns
argument to modify how gentlg
renders
the borders under the cells.
Border functions:
border_fns
will accept your own, custom functions as long as
they adhere to the format.
All the functions passed to border_fns
need to accept two arguments:
the first - the printed huxtable object,
the second - a border matrix.
They also must return a matrix interpreted the same way as border_matrix
passed to add_bottom_borders
or gentlg()
.
border_matrix <- matrix(c(1, 1, 2, 0, 1, 1, 0, 0, 0), nrow = 3, ncol = 3) ht <- huxtable::as_huxtable( data.frame(a = c(1, 2, 3), b = c("a", "b", "c"), c = c(TRUE, FALSE, TRUE)) ) # By default adds no borders add_bottom_borders(ht, border_matrix) # Adds spanning borders under cells with text in the second row add_bottom_borders(ht, transform_fns = list(spanning_borders(2))) # Adds spanning borders under cells with text in the second row and a border # under a cell in row 3 and column 3 add_bottom_borders(ht, transform_fns = list(spanning_borders(2), single_border(3, 3))) final <- data.frame( label = c( "Overall", "Safety Analysis Set", "Any Adverse event{\\super a}", "- Serious Adverse Event" ), Drug_A = c("", "40", "10 (25%)", "0"), Drug_B = c("", "40", "10 (25%)", "0"), anbr = c(1, 2, 3, 4), roworder = c(1, 1, 1, 1), boldme = c(1, 0, 0, 0), newrows = c(0, 0, 1, 0), indentme = c(0, 0, 0, 1), newpage = c(0, 0, 0, 0) ) # Add spanning bottom borders under the cells in the first row gentlg( huxme = final, wcol = c(0.70, 0.15, 0.15), file = "TSFAEX", colheader = c("", "Drug A", "Drug B"), title = "This is Amazing Demonstration 1", footers = c( "Note: For demonstrative purposes only", "{\\super a} Subjects are counted once for any given event." ), border_fns = list(no_borders, spanning_borders(1)) ) # Tables with no bottom borders gentlg( huxme = final, wcol = c(0.70, 0.15, 0.15), file = "TSFAEX", colheader = c("", "Drug A", "Drug B"), title = "This is Amazing Demonstration 1", footers = c( "Note: For demonstrative purposes only", "{\\super a} Subjects are counted once for any given event." ), border_fns = list(no_borders) ) # Tables with a border under cell in the 3nd row and 3rd column, # and borders under cells in the first row gentlg( huxme = final, wcol = c(0.70, 0.15, 0.15), file = "TSFAEX", colheader = c("", "Drug A", "Drug B"), title = "This is Amazing Demonstration 1", footers = c( "Note: For demonstrative purposes only", "{\\super a} Subjects are counted once for any given event." ), border_fns = list(no_borders, spanning_borders(1), single_border(3, 3)) ) # We discourage, but you can pass the border matrix directly mat <- matrix(rep(0, 8 * 3), ncol = 3, nrow = 8) mat[3, 3] <- 1 gentlg( huxme = final, wcol = c(0.70, 0.15, 0.15), file = "TSFAEX", colheader = c("", "Drug A", "Drug B"), title = "This is Amazing Demonstration 1", footers = c( "Note: For demonstrative purposes only", "{\\super a} Subjects are counted once for any given event." ), bottom_borders = mat, # The same as a single border under 3nd row and 3rd column border_fns = list() ) # clean up. file.remove("tsfaex.rtf")
border_matrix <- matrix(c(1, 1, 2, 0, 1, 1, 0, 0, 0), nrow = 3, ncol = 3) ht <- huxtable::as_huxtable( data.frame(a = c(1, 2, 3), b = c("a", "b", "c"), c = c(TRUE, FALSE, TRUE)) ) # By default adds no borders add_bottom_borders(ht, border_matrix) # Adds spanning borders under cells with text in the second row add_bottom_borders(ht, transform_fns = list(spanning_borders(2))) # Adds spanning borders under cells with text in the second row and a border # under a cell in row 3 and column 3 add_bottom_borders(ht, transform_fns = list(spanning_borders(2), single_border(3, 3))) final <- data.frame( label = c( "Overall", "Safety Analysis Set", "Any Adverse event{\\super a}", "- Serious Adverse Event" ), Drug_A = c("", "40", "10 (25%)", "0"), Drug_B = c("", "40", "10 (25%)", "0"), anbr = c(1, 2, 3, 4), roworder = c(1, 1, 1, 1), boldme = c(1, 0, 0, 0), newrows = c(0, 0, 1, 0), indentme = c(0, 0, 0, 1), newpage = c(0, 0, 0, 0) ) # Add spanning bottom borders under the cells in the first row gentlg( huxme = final, wcol = c(0.70, 0.15, 0.15), file = "TSFAEX", colheader = c("", "Drug A", "Drug B"), title = "This is Amazing Demonstration 1", footers = c( "Note: For demonstrative purposes only", "{\\super a} Subjects are counted once for any given event." ), border_fns = list(no_borders, spanning_borders(1)) ) # Tables with no bottom borders gentlg( huxme = final, wcol = c(0.70, 0.15, 0.15), file = "TSFAEX", colheader = c("", "Drug A", "Drug B"), title = "This is Amazing Demonstration 1", footers = c( "Note: For demonstrative purposes only", "{\\super a} Subjects are counted once for any given event." ), border_fns = list(no_borders) ) # Tables with a border under cell in the 3nd row and 3rd column, # and borders under cells in the first row gentlg( huxme = final, wcol = c(0.70, 0.15, 0.15), file = "TSFAEX", colheader = c("", "Drug A", "Drug B"), title = "This is Amazing Demonstration 1", footers = c( "Note: For demonstrative purposes only", "{\\super a} Subjects are counted once for any given event." ), border_fns = list(no_borders, spanning_borders(1), single_border(3, 3)) ) # We discourage, but you can pass the border matrix directly mat <- matrix(rep(0, 8 * 3), ncol = 3, nrow = 8) mat[3, 3] <- 1 gentlg( huxme = final, wcol = c(0.70, 0.15, 0.15), file = "TSFAEX", colheader = c("", "Drug A", "Drug B"), title = "This is Amazing Demonstration 1", footers = c( "Note: For demonstrative purposes only", "{\\super a} Subjects are counted once for any given event." ), bottom_borders = mat, # The same as a single border under 3nd row and 3rd column border_fns = list() ) # clean up. file.remove("tsfaex.rtf")
indentme
, newrows
, newpage
, and roworder
to
the results dataframeAdd the formatting variables of indentme
, newrows
, newpage
, and roworder
to
the results dataframe
add_format(df, tableby = NULL, groupby = NULL, .keep = FALSE)
add_format(df, tableby = NULL, groupby = NULL, .keep = FALSE)
df |
(required) dataframe of results and must contain the |
tableby |
(optional) character vector containing table by variables |
groupby |
(optional) character vector containing group by variables |
.keep |
(optional) should |
dataframe with the formatting variables indentme, newrows, newpage, and roworder added
df <- tibble::tibble(row_type = c("TABLE_BY_HEADER", "HEADER", "BY_HEADER1", "N", "VALUE", "COUNTS", "UNIVAR", "NESTED", "NESTED"), nested_level = c(NA, NA, NA, NA, NA, NA, NA, 1, 2), group_level = c(0, 0, 0, 0, 0, 0, 0, 0, 0), label = c(NA, NA, NA, NA, NA, "N",NA, NA, NA), by = c(NA, NA, NA, NA, NA, NA, NA, NA, NA), tableby = c(NA, NA, NA, NA, NA, NA, NA, NA, NA), anbr = c(1:9)) add_format(df)
df <- tibble::tibble(row_type = c("TABLE_BY_HEADER", "HEADER", "BY_HEADER1", "N", "VALUE", "COUNTS", "UNIVAR", "NESTED", "NESTED"), nested_level = c(NA, NA, NA, NA, NA, NA, NA, 1, 2), group_level = c(0, 0, 0, 0, 0, 0, 0, 0, 0), label = c(NA, NA, NA, NA, NA, "N",NA, NA, NA), by = c(NA, NA, NA, NA, NA, NA, NA, NA, NA), tableby = c(NA, NA, NA, NA, NA, NA, NA, NA, NA), anbr = c(1:9)) add_format(df)
Add the indentme
variable to your results data. This drives the number of
indents for the row label text (e.g. 0, 1, 2, etc.).
add_indent(df)
add_indent(df)
df |
dataframe of results that contains |
The group_level
variable, which is added to the results dataframe by freq()
and univar()
calls, is needed to define indentation when by variables are
used for summary.
The nested_level
variable, which is added to the results dataframe by
nested_freq()
, is needed to define indentation for each level of nesting.
Both of these are added to the default indentation which is driven by
row_type
.
row_type | default indentation |
TABLE_BY_HEADER | 0 |
BY_HEADER[1-9] | 0 |
HEADER | 0 |
N | 1 |
VALUE | 2 |
NESTED | 0 |
dataframe with the indentme
variable added.
df <- tibble::tibble(row_type = c("TABLE_BY_HEADER", "HEADER", "BY_HEADER1", "N", "VALUE", "COUNTS", "UNIVAR", "NESTED", "NESTED"), nested_level = c(NA, NA, NA, NA, NA, NA, NA, 1, 2), group_level = c(0, 0, 0, 0, 0, 0, 0, 0, 0), label = c(NA, NA, NA, NA, NA, "N",NA, NA, NA), by = c(NA, NA, NA, NA, NA, NA, NA, NA, NA), tableby = c(NA, NA, NA, NA, NA, NA, NA, NA, NA)) add_indent(df)
df <- tibble::tibble(row_type = c("TABLE_BY_HEADER", "HEADER", "BY_HEADER1", "N", "VALUE", "COUNTS", "UNIVAR", "NESTED", "NESTED"), nested_level = c(NA, NA, NA, NA, NA, NA, NA, 1, 2), group_level = c(0, 0, 0, 0, 0, 0, 0, 0, 0), label = c(NA, NA, NA, NA, NA, "N",NA, NA, NA), by = c(NA, NA, NA, NA, NA, NA, NA, NA, NA), tableby = c(NA, NA, NA, NA, NA, NA, NA, NA, NA)) add_indent(df)
The newrows variable is used by gentlg()
to define when to add a blank row
to the output. Data will be grouped by anbr and the variables passed into
the tableby and groupby parameters.newrows
will be set to 1 for the first
record in each group, except for the first row in the data.
The first row will always be set to 0.
add_newrows(df, tableby = NULL, groupby = NULL)
add_newrows(df, tableby = NULL, groupby = NULL)
df |
dataframe of results. must contain the anbr variable that is added by add_format() |
tableby |
character vector containing table by variables used to generate the results |
groupby |
character vector containing group by variables used to generate the results |
dataframe with the variable newrows and roworder added. newrows is used by gentlg to insert line breaks.
# Example showing how newrows is set to one for each new anbr except # the first tbl <- structure( list(rowvar = c("RANDFL", "AGE", "AGE", "AGE", "AGE", "AGE"), anbr = c(1L, 2L, 2L, 2L, 2L, 2L), label = c("Analysis set: Subjects Randomized", "Age (Years)", "N", "Mean (SD)", "Range", "IQ Range"), row_type = c("COUNT", "UNIVAR", "UNIVAR", "UNIVAR", "UNIVAR", "UNIVAR") ), row.names = c(NA,-6L), class = c("tbl_df", "tbl", "data.frame") ) add_newrows(tbl) # Example of use when you have results summarized by one or more variables tbl2 <- tibble::tribble( ~anbr, ~SEX, ~label, ~row_type, "01", "F", "Sex : F", "TABLE_BY_HEADER", "01", "F", "<65", "VALUE", "01", "F", "65-80", "VALUE", "01", "F", ">80", "VALUE", "01", "M", "Sex : M", "TABLE_BY_HEADER", "01", "M", "<65", "VALUE", "01", "M", "65-80", "VALUE", "01", "M", ">80", "VALUE" ) add_newrows(tbl2, tableby = "SEX") tbl3 <- tibble::tribble( ~anbr, ~SEX, ~ETHNIC, ~label, ~row_type, "01", "F", NA, "Sex : F", "TABLE_BY_HEADER", "01", "F", "HISPANIC OR LATINO", "HISPANIC OR LATINO", "BY_HEADER1", "01", "F", "HISPANIC OR LATINO", "<65", "VALUE", "01", "F", "HISPANIC OR LATINO", ">80", "VALUE", "01", "F", "HISPANIC OR LATINO", "65-80", "VALUE", "01", "F", "NOT HISPANIC OR LATINO", "NOT HISPANIC OR LATINO", "BY_HEADER1", "01", "F", "NOT HISPANIC OR LATINO", "<65", "VALUE", "01", "F", "NOT HISPANIC OR LATINO", "65-80", "VALUE", "01", "F", "NOT HISPANIC OR LATINO", ">80", "VALUE", "01", "M", NA, "Sex : M", "TABLE_BY_HEADER", "01", "M", "HISPANIC OR LATINO", "HISPANIC OR LATINO", "BY_HEADER1", "01", "M", "HISPANIC OR LATINO", "<65", "VALUE", "01", "M", "HISPANIC OR LATINO", "65-80", "VALUE", "01", "M", "HISPANIC OR LATINO", ">80", "VALUE", "01", "M", "NOT HISPANIC OR LATINO", "NOT HISPANIC OR LATINO", "BY_HEADER1", "01", "M", "NOT HISPANIC OR LATINO", "<65", "VALUE", "01", "M", "NOT HISPANIC OR LATINO", "65-80", "VALUE", "01", "M", "NOT HISPANIC OR LATINO", ">80", "VALUE" ) add_newrows(tbl3, tableby = "SEX", groupby = "ETHNIC")
# Example showing how newrows is set to one for each new anbr except # the first tbl <- structure( list(rowvar = c("RANDFL", "AGE", "AGE", "AGE", "AGE", "AGE"), anbr = c(1L, 2L, 2L, 2L, 2L, 2L), label = c("Analysis set: Subjects Randomized", "Age (Years)", "N", "Mean (SD)", "Range", "IQ Range"), row_type = c("COUNT", "UNIVAR", "UNIVAR", "UNIVAR", "UNIVAR", "UNIVAR") ), row.names = c(NA,-6L), class = c("tbl_df", "tbl", "data.frame") ) add_newrows(tbl) # Example of use when you have results summarized by one or more variables tbl2 <- tibble::tribble( ~anbr, ~SEX, ~label, ~row_type, "01", "F", "Sex : F", "TABLE_BY_HEADER", "01", "F", "<65", "VALUE", "01", "F", "65-80", "VALUE", "01", "F", ">80", "VALUE", "01", "M", "Sex : M", "TABLE_BY_HEADER", "01", "M", "<65", "VALUE", "01", "M", "65-80", "VALUE", "01", "M", ">80", "VALUE" ) add_newrows(tbl2, tableby = "SEX") tbl3 <- tibble::tribble( ~anbr, ~SEX, ~ETHNIC, ~label, ~row_type, "01", "F", NA, "Sex : F", "TABLE_BY_HEADER", "01", "F", "HISPANIC OR LATINO", "HISPANIC OR LATINO", "BY_HEADER1", "01", "F", "HISPANIC OR LATINO", "<65", "VALUE", "01", "F", "HISPANIC OR LATINO", ">80", "VALUE", "01", "F", "HISPANIC OR LATINO", "65-80", "VALUE", "01", "F", "NOT HISPANIC OR LATINO", "NOT HISPANIC OR LATINO", "BY_HEADER1", "01", "F", "NOT HISPANIC OR LATINO", "<65", "VALUE", "01", "F", "NOT HISPANIC OR LATINO", "65-80", "VALUE", "01", "F", "NOT HISPANIC OR LATINO", ">80", "VALUE", "01", "M", NA, "Sex : M", "TABLE_BY_HEADER", "01", "M", "HISPANIC OR LATINO", "HISPANIC OR LATINO", "BY_HEADER1", "01", "M", "HISPANIC OR LATINO", "<65", "VALUE", "01", "M", "HISPANIC OR LATINO", "65-80", "VALUE", "01", "M", "HISPANIC OR LATINO", ">80", "VALUE", "01", "M", "NOT HISPANIC OR LATINO", "NOT HISPANIC OR LATINO", "BY_HEADER1", "01", "M", "NOT HISPANIC OR LATINO", "<65", "VALUE", "01", "M", "NOT HISPANIC OR LATINO", "65-80", "VALUE", "01", "M", "NOT HISPANIC OR LATINO", ">80", "VALUE" ) add_newrows(tbl3, tableby = "SEX", groupby = "ETHNIC")
bind_table combines analysis results with formatting variables (indentme, newrows, newpage)
based on by variables (tablebyvar, rowbyvar), such that appropriate formatting (indentation,
line break, page break) can be applied in creating the output. It can also attach the column
metadata attribute, which will be automatically used in gentlg
for creating output.
bind_table( ..., colvar = NULL, tablebyvar = NULL, rowbyvar = NULL, prefix = NULL, add_count = FALSE, add_format = TRUE, column_metadata_file = NULL, column_metadata = NULL, tbltype = NULL )
bind_table( ..., colvar = NULL, tablebyvar = NULL, rowbyvar = NULL, prefix = NULL, add_count = FALSE, add_format = TRUE, column_metadata_file = NULL, column_metadata = NULL, tbltype = NULL )
... |
(required) a set of tidytlg tables to bind together |
colvar |
(required) treatment variable within df to use to summarize.
Required if |
tablebyvar |
(optional) repeat entire table by variable within df |
rowbyvar |
(optional) any rowbyvar values used to create the table |
prefix |
(optional) text to prefix the values of tablebyvar with |
add_count |
(optional) Should a count be included in the tablebyvar? (default = TRUE) |
add_format |
(optional) Should format be added to the output table? This is done using the add_format function. (default = TRUE) |
column_metadata_file |
(optional) An excel file for column_metadata.
Does not change the behavior of the function binds the column metadata
for |
column_metadata |
(optional) A dataframe containing the column metadata. This will be used in place of column_metadata_file. |
tbltype |
(optional) A value used to subset the column_metadata_file. |
The tidytlg tables bound together reflecting the tablebyvars used
library(magrittr) # bind tables together t1 <- cdisc_adsl %>% freq(colvar = "TRT01PN", rowvar = "ITTFL", statlist = statlist("n"), subset = ITTFL == "Y", rowtext = "Analysis set: ITT") t2 <- cdisc_adsl %>% univar(colvar = "TRT01PN", rowvar = "AGE", decimal = 0, row_header = "Age, years") bind_table(t1, t2) # bind tables together w/by groups t1 <- cdisc_adsl %>% freq(colvar = "TRT01PN", rowvar = "ITTFL", rowbyvar = "SEX", statlist = statlist("n"), subset = ITTFL == "Y", rowtext = "Analysis set: ITT") t2 <- cdisc_adsl %>% univar(colvar = "TRT01PN", rowvar = "AGE", rowbyvar = "SEX", decimal = 0, row_header = "Age, years") bind_table(t1, t2, rowbyvar = "SEX") # bind tables together w/table by groups t1 <- cdisc_adsl %>% freq(colvar = "TRT01PN", rowvar = "ITTFL", tablebyvar = "SEX", statlist = statlist("n"), subset = ITTFL == "Y", rowtext = "Analysis set: ITT") t2 <- cdisc_adsl %>% univar(colvar = "TRT01PN", rowvar = "AGE", tablebyvar = "SEX", decimal = 0, row_header = "Age, years") bind_table(t1, t2, tablebyvar = "SEX") # w/prefix bind_table(t1, t2, tablebyvar = "SEX", prefix = "Gender: ") # w/counts bind_table(t1, t2, tablebyvar = "SEX", add_count = TRUE, colvar = "TRT01PN")
library(magrittr) # bind tables together t1 <- cdisc_adsl %>% freq(colvar = "TRT01PN", rowvar = "ITTFL", statlist = statlist("n"), subset = ITTFL == "Y", rowtext = "Analysis set: ITT") t2 <- cdisc_adsl %>% univar(colvar = "TRT01PN", rowvar = "AGE", decimal = 0, row_header = "Age, years") bind_table(t1, t2) # bind tables together w/by groups t1 <- cdisc_adsl %>% freq(colvar = "TRT01PN", rowvar = "ITTFL", rowbyvar = "SEX", statlist = statlist("n"), subset = ITTFL == "Y", rowtext = "Analysis set: ITT") t2 <- cdisc_adsl %>% univar(colvar = "TRT01PN", rowvar = "AGE", rowbyvar = "SEX", decimal = 0, row_header = "Age, years") bind_table(t1, t2, rowbyvar = "SEX") # bind tables together w/table by groups t1 <- cdisc_adsl %>% freq(colvar = "TRT01PN", rowvar = "ITTFL", tablebyvar = "SEX", statlist = statlist("n"), subset = ITTFL == "Y", rowtext = "Analysis set: ITT") t2 <- cdisc_adsl %>% univar(colvar = "TRT01PN", rowvar = "AGE", tablebyvar = "SEX", decimal = 0, row_header = "Age, years") bind_table(t1, t2, tablebyvar = "SEX") # w/prefix bind_table(t1, t2, tablebyvar = "SEX", prefix = "Gender: ") # w/counts bind_table(t1, t2, tablebyvar = "SEX", add_count = TRUE, colvar = "TRT01PN")
ADAE data created from subsetting the CDISC ADAE dataset
cdisc_adae
cdisc_adae
A data frame with 84 rows and 55 variables:
Study Identifier
Study Site Identifier
Unique Subject Identifier
Subject Identifier for the Study
Actual Treatment
Actual Treatment (N)
Age
Pooled Age Group 1
Pooled Age Group 1 (N)
Race
Race (N)
Sex
Safety Population Flag
Date of First Exposure to Treatment
Date of Last Exposure to Treatment
Analysis Start Date
Analysis Start Date Imputation Flag
Analysis Start Relative Day
Analysis End Date
Analysis End Relative Day
AE Duration (N)
AE Duration Units
Reported Term for the Adverse Event
Lowest Level Term
Lowest Level Term Code
Dictionary-Derived Term
Preferred Term Code
High Level Term
High Level Term Code
High Level Group Term
High Level Group Term Code
Body System or Organ Class
Primary System Organ Class
Primary System Organ Class Code
Severity/Intensity
Serious Event
Involves Cancer
Congenital Anomaly or Birth Defect
Persist or Signif Disability/Incapacity
Results in Death
Requires or Prolongs Hospitalization
Is Life Threatening
Occurred with Overdose
Causality
Action Taken with Study Treatment
Outcome of Adverse Event
Sequence Number
Treatment Emergent Analysis Flag
1st Occurrence of Any AE Flag
1st Occurrence of SOC Flag
1st Occurrence of Preferred Term Flag
1st Occurrence 02 Flag for Serious
1st Occurrence 03 Flag for Serious SOC
1st Occurrence 04 Flag for Serious PT
Customized Query 01 Name
1st Occurrence 01 Flag for CQ01
CDISC SDTM/ADAM Pilot Project.
ADLB data created from subsetting the CDISC ADLB dataset
cdisc_adlb
cdisc_adlb
A data frame with 2154 rows and 46 variables:
Study Identifier
Subject Identifier for the Study
Unique Subject Identifier
Actual Treatment
Actual Treatment (N)
Date of First Exposure to Treatment
Date of Last Exposure to Treatment
Age
Pooled Age Group 1
Pooled Age Group 1 (N)
Race
Race (N)
Sex
Completers of Week 24 Population Flag
Discontinued due to AE?
Safety Population Flag
Analysis Visit
Analysis Visit (N)
Analysis Relative Day
Analysis Date
Visit Name
Visit Number
Parameter
Parameter Code
Parameter (N)
Parameter Category 1
Analysis Value
Baseline Value
Change from Baseline
Analysis Range 1 Lower Limit
Analysis Range 1 Upper Limit
Ratio to Analysis Range 1 Lower Limit
Ratio to Analysis Range 1 Upper Limit
Base Ratio to Analysis Range 1 Lower Lim
Base Ratio to Analysis Range 1 Upper Lim
Analysis 01 - Special Interest Flag
Amount Threshold Range
Analysis Reference Range Indicator
Baseline Reference Range Indicator
Baseline Record Flag
Last value in treatment visit
Sequence Number
Reference Range Indicator
Numeric Result/Finding in Standard Units
CDISC SDTM/ADAM Pilot Project.
ADSL data created from subsetting the CDISC ADSL with 15 subjects (5 subjects in each arm)
cdisc_adsl
cdisc_adsl
A data frame with 15 rows and 49 variables:
Study Identifier
Unique Subject Identifier
Subject Identifier for the Study
Study Site Identifier
Pooled Site Group 1
Description of Planned Arm
Planned Treatment for Period 01
Planned Treatment for Period 01 (N)
Actual Treatment for Period 01
Actual Treatment for Period 01 (N)
Date of First Exposure to Treatment
Date of Last Exposure to Treatment
Duration of Treatment (days)
Avg Daily Dose (as planned)
Cumulative Dose (as planned)
Age
Pooled Age Group 1
Pooled Age Group 1 (N)
Age Units
Race
Race (N)
Sex
Ethnicity
Safety Population Flag
Intent-To-Treat Population Flag
Efficacy Population Flag
Completers of Week 8 Population Flag
Completers of Week 16 Population Flag
Completers of Week 24 Population Flag
Did the Subject Discontinue the Study?
Discontinued due to AE?
Subject Died?
Baseline BMI (kg/m^2)
Pooled Baseline BMI Group 1
Baseline Height (cm)
Baseline Weight (kg)
Years of Education
Date of Onset of Disease
Duration of Disease (Months)
Pooled Disease Duration Group 1
Date of Visit 1
Subject Reference Start Date/Time
Subject Reference End Date/Time
End of Trt Visit (Vis 12 or Early Term.)
Date of Discontinuation/Completion
Standardized Disposition Term
End of Study Status
Reason for Discontinuation
MMSE Total
CDISC SDTM/ADAM Pilot Project.
ADVS data created from subsetting the CDISC ADVS dataset
cdisc_advs
cdisc_advs
A data frame with 1938 rows and 35 variables:
Study Identifier
Study Site Identifier
Unique Subject Identifier
Age
Pooled Age Group 1
Pooled Age Group 1 (N)
Race
Race (N)
Sex
Safety Population Flag
Date of First Exposure to Treatment
Date of Last Exposure to Treatment
Planned Treatment
Planned Treatment (N)
Actual Treatment
Actual Treatment (N)
Parameter Code
Parameter
Parameter (N)
Analysis Date
Analysis Relative Day
Analysis Timepoint (N)
Analysis Timepoint
Analysis Visit
Analysis Visit (N)
Analysis Value
Baseline Value
Baseline Value
Change from Baseline
Percent Change from Baseline
Visit Number
Visit Name
Sequence Number
Analysis 01 - Special Interest Flag
Baseline Record Flag
CDISC SDTM/ADAM Pilot Project.
Convert character variable to a factor based off it's numeric variable counterpart.
char2factor(df, c_var, n_var)
char2factor(df, c_var, n_var)
df |
data frame. |
c_var |
character variable within the data frame. |
n_var |
numeric variable counter part within the data frame to control the levels. |
A factor.
df <- tibble::tribble( ~TRT01P, ~TRT01PN, "Placebo", 1, "Low Dose", 2, "High Dose", 3 ) # alphabetical order dplyr::arrange(df, TRT01P) # change to factor with char2factor df$TRT01P <- char2factor(df, "TRT01P", "TRT01PN") # factor order dplyr::arrange(df, TRT01P)
df <- tibble::tribble( ~TRT01P, ~TRT01PN, "Placebo", 1, "Low Dose", 2, "High Dose", 3 ) # alphabetical order dplyr::arrange(df, TRT01P) # change to factor with char2factor df$TRT01P <- char2factor(df, "TRT01P", "TRT01PN") # factor order dplyr::arrange(df, TRT01P)
Adds borders under cells in a column
col_borders(col, rows)
col_borders(col, rows)
col |
|
rows |
|
Other border_functions:
no_borders()
,
row_border()
,
single_border()
,
spanning_borders()
This is used by tlgsetup to prepare you input data to support the desired column layout.
column_metadata
column_metadata
A data frame with one row per column for each table type and 6 variables:
identifier used to group a table column layout
distinct variable values used, typically numeric and typically a treatment/main effect variable, think TRT01PN
decode of coldef that will display as a column header in the table
spanning header to display across multiple columns
spanning header to display across multiple columns, second level
spanning header to display across multiple columns, third level
Frequency counts and percentages for a variable by treatment and/or group.
freq( df, denom_df = df, colvar = NULL, tablebyvar = NULL, rowvar = NULL, rowbyvar = NULL, statlist = getOption("tidytlg.freq.statlist.default"), decimal = 1, nested = FALSE, cutoff = NULL, cutoff_stat = "pct", subset = TRUE, descending_by = NULL, display_missing = FALSE, rowtext = NULL, row_header = NULL, .keep = TRUE, .ord = FALSE, pad = TRUE, ... )
freq( df, denom_df = df, colvar = NULL, tablebyvar = NULL, rowvar = NULL, rowbyvar = NULL, statlist = getOption("tidytlg.freq.statlist.default"), decimal = 1, nested = FALSE, cutoff = NULL, cutoff_stat = "pct", subset = TRUE, descending_by = NULL, display_missing = FALSE, rowtext = NULL, row_header = NULL, .keep = TRUE, .ord = FALSE, pad = TRUE, ... )
df |
(required) dataframe containing records to summarize by treatment |
denom_df |
(optional) dataframe used for population based denominators (default = df) |
colvar |
(required) treatment variable within df to use to summarize |
tablebyvar |
(optional) repeat entire table by variable within df |
rowvar |
(required) character vector of variables to summarize within the dataframe |
rowbyvar |
(optional) repeat |
statlist |
(optional) statlist object of stats to keep of length 1 or 2 specifying list of statistics and format desired (e.g statlist(c("N", "n (x.x\ (x.x)"))) |
decimal |
(optional) decimal precision root level default (default = 1) |
nested |
(optional) INTERNAL USE ONLY. The default should not be changed.
Switch on when this function is called by |
cutoff |
(optional) percentage cutoff threshold. This can be passed as a
numeric cutoff, in that case any rows with greater than or equal to that
cutoff will be preserved, others will be dropped. To specify a single column
to define the cutoff logic, pass a character value of the form
|
cutoff_stat |
(optional) The value to cutoff by, n or pct. (default =
'pct'). Can be done with multiple columns by adding & or | ex. |
subset |
(optional) An R expression that will be passed to a
|
descending_by |
(optional) The column or columns to sort descending
counts. Can also provide a named list to do ascending order ex.
c("VarName1" = "asc", "VarName2" = "desc") would sort by VarName1 in
ascending order and VarName2 in descending order. In case of a tie in count
or |
display_missing |
(optional) Should the "missing" values be displayed? If missing values are displayed, denominators will include missing values. (default = FALSE) |
rowtext |
(optional) A character vector used to rename the |
row_header |
(optional) A character vector to be added to the table. |
.keep |
(optional) Should the |
.ord |
Should the ordering columns be output with the table? This is useful if a table needs to be merged or reordered in any way after build. |
pad |
(optional) A boolean that controls if levels with zero records should be included in the final table. (default = TRUE) |
... |
(optional) Named arguments to be included as columns on the table. |
A dataframe of results
By default, a frequency table is sorted based on the factor level of the
rowvar
variable. If the rowvar
variable isn't a factor, it will be
sorted alphabetically. This behavior can be modified in two ways, the first
is the char2factor()
function that offers a interface for releveling a
variable based on a numeric variable, like VISITN. The second is based on
the descending_by
argument which will sort based on counts on a variable.
adsl <- data.frame( USUBJID = c("DEMO-101", "DEMO-102", "DEMO-103"), RACE = c("WHITE", "BLACK", "ASIAN"), SEX = c("F", "M", "F"), colnbr = factor(c("Placebo", "Low", "High")) ) # Unique subject count of a single variable freq(adsl ,colvar = "colnbr" ,rowvar = "RACE" ,statlist = statlist("n")) # Unique subject count and percent of a single variable freq(adsl ,colvar = "colnbr" ,rowvar = "RACE" ,statlist = statlist(c("N", "n (x.x%)"))) # Unique subject count of a variable by another variable freq(adsl ,colvar = "colnbr" ,rowvar = "RACE" ,rowbyvar = "SEX" ,statlist = statlist("n")) # Unique subject count of a variable by another variable using colvar and # group to define the denominator freq(adsl ,colvar = "colnbr" ,rowvar = "RACE" ,rowbyvar = "SEX" ,statlist = statlist("n (x.x%)", denoms_by = c("colnbr", "SEX"))) # Cut records where count meets threshold for any column freq(cdisc_adsl ,rowvar = "ETHNIC" ,colvar = "TRT01P" ,statlist = statlist("n (x.x%)") ,cutoff = "5" ,cutoff_stat = "n") # Cut records where count meets threshold for a specific column freq(cdisc_adsl ,rowvar = "ETHNIC" ,colvar = "TRT01P" ,statlist = statlist("n (x.x%)") ,cutoff = "Placebo >= 3" ,cutoff_stat = "n") # Below illustrates how to make the same calls to freq() as above, using # table and column metadata. # Unique subject count of a single variable table_metadata <- tibble::tribble( ~anbr, ~func, ~df, ~rowvar, ~statlist, ~colvar, 1, "freq", "cdisc_adsl", "ETHNIC", statlist("n"), "TRT01PN" ) generate_results(table_metadata, column_metadata = column_metadata, tbltype = "type1") # Unique subject count and percent of a single variable table_metadata <- tibble::tribble( ~anbr, ~func, ~df, ~rowvar, ~statlist, ~colvar, "1", "freq", "cdisc_adsl", "ETHNIC", statlist(c("N", "n (x.x%)")),"TRT01PN" ) generate_results(table_metadata, column_metadata = column_metadata, tbltype = "type1") # Cut records where count meets threshold for any column table_metadata <- tibble::tibble( anbr= "1", func = "freq", df = "cdisc_adsl", rowvar = "ETHNIC", statlist = statlist("n (x.x%)"), colvar = "TRT01PN", cutoff = 5, cutoff_stat = "n") generate_results(table_metadata, column_metadata = column_metadata, tbltype = "type1") # Cut records where count meets threshold for a specific column table_metadata <- tibble::tibble( anbr= 1, func = "freq", df = "cdisc_adsl", rowvar = "ETHNIC", statlist = statlist("n (x.x%)"), colvar = "TRT01PN", cutoff = 'col1 >= 3', cutoff_stat = "n") generate_results(table_metadata, column_metadata = column_metadata, tbltype = "type1")
adsl <- data.frame( USUBJID = c("DEMO-101", "DEMO-102", "DEMO-103"), RACE = c("WHITE", "BLACK", "ASIAN"), SEX = c("F", "M", "F"), colnbr = factor(c("Placebo", "Low", "High")) ) # Unique subject count of a single variable freq(adsl ,colvar = "colnbr" ,rowvar = "RACE" ,statlist = statlist("n")) # Unique subject count and percent of a single variable freq(adsl ,colvar = "colnbr" ,rowvar = "RACE" ,statlist = statlist(c("N", "n (x.x%)"))) # Unique subject count of a variable by another variable freq(adsl ,colvar = "colnbr" ,rowvar = "RACE" ,rowbyvar = "SEX" ,statlist = statlist("n")) # Unique subject count of a variable by another variable using colvar and # group to define the denominator freq(adsl ,colvar = "colnbr" ,rowvar = "RACE" ,rowbyvar = "SEX" ,statlist = statlist("n (x.x%)", denoms_by = c("colnbr", "SEX"))) # Cut records where count meets threshold for any column freq(cdisc_adsl ,rowvar = "ETHNIC" ,colvar = "TRT01P" ,statlist = statlist("n (x.x%)") ,cutoff = "5" ,cutoff_stat = "n") # Cut records where count meets threshold for a specific column freq(cdisc_adsl ,rowvar = "ETHNIC" ,colvar = "TRT01P" ,statlist = statlist("n (x.x%)") ,cutoff = "Placebo >= 3" ,cutoff_stat = "n") # Below illustrates how to make the same calls to freq() as above, using # table and column metadata. # Unique subject count of a single variable table_metadata <- tibble::tribble( ~anbr, ~func, ~df, ~rowvar, ~statlist, ~colvar, 1, "freq", "cdisc_adsl", "ETHNIC", statlist("n"), "TRT01PN" ) generate_results(table_metadata, column_metadata = column_metadata, tbltype = "type1") # Unique subject count and percent of a single variable table_metadata <- tibble::tribble( ~anbr, ~func, ~df, ~rowvar, ~statlist, ~colvar, "1", "freq", "cdisc_adsl", "ETHNIC", statlist(c("N", "n (x.x%)")),"TRT01PN" ) generate_results(table_metadata, column_metadata = column_metadata, tbltype = "type1") # Cut records where count meets threshold for any column table_metadata <- tibble::tibble( anbr= "1", func = "freq", df = "cdisc_adsl", rowvar = "ETHNIC", statlist = statlist("n (x.x%)"), colvar = "TRT01PN", cutoff = 5, cutoff_stat = "n") generate_results(table_metadata, column_metadata = column_metadata, tbltype = "type1") # Cut records where count meets threshold for a specific column table_metadata <- tibble::tibble( anbr= 1, func = "freq", df = "cdisc_adsl", rowvar = "ETHNIC", statlist = statlist("n (x.x%)"), colvar = "TRT01PN", cutoff = 'col1 >= 3', cutoff_stat = "n") generate_results(table_metadata, column_metadata = column_metadata, tbltype = "type1")
Generate Results using Table and Column Metadata
generate_results( table_metadata, column_metadata_file = NULL, column_metadata = NULL, env = parent.frame(), tbltype = NULL, add_count = FALSE )
generate_results( table_metadata, column_metadata_file = NULL, column_metadata = NULL, env = parent.frame(), tbltype = NULL, add_count = FALSE )
table_metadata |
dataframe containing table metadata (see ?table_metadata for details) |
column_metadata_file |
An excel file with the data for column_metadata.
The file is read in with |
column_metadata |
A dataframe containing the column metadata. This will
be used in place of |
env |
environment to find dataframe specified in the table metadata (defaults to parent environment) |
tbltype |
If used, this will be used to subset the |
add_count |
Passed to |
dataframe of results
Generate and output a huxtable with desired properties
During this function call, the huxtable can be written to an RTF or
displayed in HTML. gentlg
is vectorized, see parameter descriptions
to learn for which arguments.
gentlg( huxme = NULL, tlf = "Table", format = "rtf", colspan = NULL, idvars = NULL, plotnames = NULL, plotwidth = NULL, plotheight = NULL, wcol = 0.45, orientation = "portrait", opath = ".", title_file = NULL, file = NULL, title = NULL, footers = NULL, print.hux = TRUE, watermark = NULL, colheader = NULL, pagenum = FALSE, bottom_borders = "old_format", border_fns = list() )
gentlg( huxme = NULL, tlf = "Table", format = "rtf", colspan = NULL, idvars = NULL, plotnames = NULL, plotwidth = NULL, plotheight = NULL, wcol = 0.45, orientation = "portrait", opath = ".", title_file = NULL, file = NULL, title = NULL, footers = NULL, print.hux = TRUE, watermark = NULL, colheader = NULL, pagenum = FALSE, bottom_borders = "old_format", border_fns = list() )
huxme |
(optional) For tables and listings, A list of input dataframes containing all columns of interest. For graphs, either NULL or a list of ggplot objects. Vectorized. |
tlf |
(optional) String, representing the output choice. Choices are "Table" "Listing" "Figure". Abbreviations are allowed eg "T" for Table. Strings can be either upper- or lowercase. Vectorized. (Default = "Table") |
format |
(optional) String, representing the output format. Choices are "rtf" and "html". Strings can be either upper- or lowercase.(Default = "rtf") |
colspan |
(optional) A list of character vectors representing the spanning headers to be used for the table or listing. The first vector represents the top spanning header, etc. Each vector should have a length equal to the number of columns in the output data frame. A spanning header is identified through the use of the same column name in adjacent elements. Vectorized. |
idvars |
(optional) Character vector defining the columns of a listing where repeated values should be removed recursively. If NULL then all column names are used in the algorithm. If NA, then the listing remains as is. |
plotnames |
(optional) Character vector containing the names of the png
files, with their extension to be incorporated for figure outputs.
The png files need to be located in the path defined by the parameter |
plotwidth |
(optional) Numerical value that indicates the plot width in cm for figure outputs. (Default = 6) |
plotheight |
(optional) Numerical value that indicates the plot height in cm for figure outputs. (Default = 5) |
wcol |
(optional) Can be a single numerical value that represents the
width of the first column or a vector, specifying the lengths of all columns
in the final table or listing. |
orientation |
(optional) String: "portrait" or "landscape". (Default = "portrait") |
opath |
(optional) File path pointing to the output files (including .png files for graphs). (Default = ".") |
title_file |
An Excel file that will be read in
with |
file |
(required) String. Output identifier. File name will be adjusted to be lowercase and have - and _ removed, this will not affect table title. |
title |
(required) String. Title of the output. Vectorized. |
footers |
(optional) Character vector, containing strings of footnotes to be included. Vectorized. |
print.hux |
(optional) Logical, indicating whether the output should be
printed to RTF ('format' = "rtf") / displayed as HTML ('format' = "HTML").
(Default = TRUE) Note that RTF is written using |
watermark |
(optional) String containing the desired watermark for RTF outputs. Vectorized. |
colheader |
(optional) Character vector that contains the column labels for a table or listing. Default uses the column labels of huxme. Vectorized. |
pagenum |
(optional) Logical. When true page numbers are added on the right side of the footer section in the format page x/y. Vectorized. (Default = FALSE) |
bottom_borders |
(optional) Matrix or |
border_fns |
(optional) List. A list of functions that transform the matrix
passed to |
A list of formatted huxtables with desired properties for output to an RTF/HTML
For tables and listings, formatting of the output can be dictated through the
formatting columns
(newrows
, indentme
, boldme
, newpage
), present in the input dataframe.
The final huxtable will display all columns of the input dataframe, except
any recognized formatting/sorting columns.
For tables, the algorithm uses
the column label
as first column. The remaining columns are treated as
summary columns.
For graphs, you can pass a ggplot object directly into huxme and gentlg will
save a png with with ggplot2::ggsave()
and output an rtf.
Steven Haesendonckx [email protected]
Pelagia Alexandra Papadopoulou [email protected]
https://github.com/hughjonesd/huxtable
final <- data.frame( label = c( "Overall", "Safety Analysis Set", "Any Adverse event{\\super a}", "- Serious Adverse Event" ), Drug_A = c("", "40", "10 (25%)", "0"), Drug_B = c("", "40", "10 (25%)", "0"), anbr = c(1, 2, 3, 4), roworder = c(1, 1, 1, 1), boldme = c(1, 0, 0, 0), newrows = c(0, 0, 1, 0), indentme = c(0, 0, 0, 1), newpage = c(0, 0, 0, 0) ) # Produce output in rtf format gentlg( huxme = final, wcol = c(0.70, 0.15, 0.15), file = "TSFAEX", title = "This is Amazing Demonstration 1", footers = c( "Note: For demonstrative purposes only", "{\\super a} Subjects are counted once for any given event." ) ) # Pass in column headers instead of using variable name gentlg( huxme = final, wcol = c(0.70, 0.15, 0.15), file = "TSFAEX", colheader = c("", "Drug A", "Drug B"), title = "This is Amazing Demonstration 1", footers = c( "Note: For demonstrative purposes only", "{\\super a} Subjects are counted once for any given event." ) ) # Add spanning bottom borders under the cells in the second row gentlg( huxme = final, wcol = c(0.70, 0.15, 0.15), file = "TSFAEX", colheader = c("", "Drug A", "Drug B"), title = "This is Amazing Demonstration 1", footers = c( "Note: For demonstrative purposes only", "{\\super a} Subjects are counted once for any given event." ), border_fns = list(spanning_borders(2)) ) # Use a watermark gentlg( huxme = final, wcol = c(0.70, 0.15, 0.15), file = "TSFAEX", colheader = c("", "Drug A", "Drug B"), title = "This is Amazing Demonstration 1", footers = c( "Note: For demonstrative purposes only", "{\\super a} Subjects are counted once for any given event." ), watermark = "Confidential" ) # Produce output in HTML format hux <- gentlg( huxme = final, file = "TSFAEX", colheader = c("", "Drug A", "Drug B"), title = "This is Amazing Demonstration 1", footers = c( "Note: For demonstrative purposes only", "{\\super a} Subjects are counted once for any given event." ), watermark = "Confidential", format = "HTML", print.hux = FALSE ) # Export to HTML page huxtable::quick_html(hux, file = "TSFAEX.html", open = FALSE) # clean up. file.remove("TSFAEX.html", "tsfaex.rtf")
final <- data.frame( label = c( "Overall", "Safety Analysis Set", "Any Adverse event{\\super a}", "- Serious Adverse Event" ), Drug_A = c("", "40", "10 (25%)", "0"), Drug_B = c("", "40", "10 (25%)", "0"), anbr = c(1, 2, 3, 4), roworder = c(1, 1, 1, 1), boldme = c(1, 0, 0, 0), newrows = c(0, 0, 1, 0), indentme = c(0, 0, 0, 1), newpage = c(0, 0, 0, 0) ) # Produce output in rtf format gentlg( huxme = final, wcol = c(0.70, 0.15, 0.15), file = "TSFAEX", title = "This is Amazing Demonstration 1", footers = c( "Note: For demonstrative purposes only", "{\\super a} Subjects are counted once for any given event." ) ) # Pass in column headers instead of using variable name gentlg( huxme = final, wcol = c(0.70, 0.15, 0.15), file = "TSFAEX", colheader = c("", "Drug A", "Drug B"), title = "This is Amazing Demonstration 1", footers = c( "Note: For demonstrative purposes only", "{\\super a} Subjects are counted once for any given event." ) ) # Add spanning bottom borders under the cells in the second row gentlg( huxme = final, wcol = c(0.70, 0.15, 0.15), file = "TSFAEX", colheader = c("", "Drug A", "Drug B"), title = "This is Amazing Demonstration 1", footers = c( "Note: For demonstrative purposes only", "{\\super a} Subjects are counted once for any given event." ), border_fns = list(spanning_borders(2)) ) # Use a watermark gentlg( huxme = final, wcol = c(0.70, 0.15, 0.15), file = "TSFAEX", colheader = c("", "Drug A", "Drug B"), title = "This is Amazing Demonstration 1", footers = c( "Note: For demonstrative purposes only", "{\\super a} Subjects are counted once for any given event." ), watermark = "Confidential" ) # Produce output in HTML format hux <- gentlg( huxme = final, file = "TSFAEX", colheader = c("", "Drug A", "Drug B"), title = "This is Amazing Demonstration 1", footers = c( "Note: For demonstrative purposes only", "{\\super a} Subjects are counted once for any given event." ), watermark = "Confidential", format = "HTML", print.hux = FALSE ) # Export to HTML page huxtable::quick_html(hux, file = "TSFAEX.html", open = FALSE) # clean up. file.remove("TSFAEX.html", "tsfaex.rtf")
This will call freq()
multiple times and combine the levels together. This
is useful for adverse event and concomitant mediations.
nested_freq( df, denom_df = df, colvar = NULL, tablebyvar = NULL, rowvar = NULL, rowbyvar = NULL, statlist = getOption("tidytlg.nested_freq.statlist.default"), decimal = 1, cutoff = NULL, cutoff_stat = "pct", subset = TRUE, descending_by = NULL, display_missing = FALSE, rowtext = NULL, row_header = NULL, .keep = TRUE, .ord = FALSE, ... )
nested_freq( df, denom_df = df, colvar = NULL, tablebyvar = NULL, rowvar = NULL, rowbyvar = NULL, statlist = getOption("tidytlg.nested_freq.statlist.default"), decimal = 1, cutoff = NULL, cutoff_stat = "pct", subset = TRUE, descending_by = NULL, display_missing = FALSE, rowtext = NULL, row_header = NULL, .keep = TRUE, .ord = FALSE, ... )
df |
(required) dataframe containing the two levels to summarize |
denom_df |
(optional) dataframe containing records to use as the denominator (default = df) |
colvar |
(required) treatment variable within df to use to summarize |
tablebyvar |
(optional) repeat entire table by variable within df. |
rowvar |
(required) nested levels separated by a star, for example AEBODSYS*AEDECOD, this can handle up to three levels. |
rowbyvar |
(optional) repeat |
statlist |
(optional) count/percent type to return (default = "n (x.x)") |
decimal |
(optional) decimal precision root level (default = 1) |
cutoff |
(optional) numeric value used to cut the data to a percentage threshold, if any column meets the threshold the entire record is kept. |
cutoff_stat |
(optional) The value to cutoff by, n or pct. (default = 'pct') |
subset |
(optional) An R expression that will be passed to a
|
descending_by |
(optional) The column or columns to sort descending values by. Can also provide a named list to do ascending order. ex. c("VarName1" = "asc", "VarName2" = "desc") would sort by VarName1 in ascending order and VarName2 in descending order. If not provided, the columns will be sorted alphabetically. |
display_missing |
(optional) Should the "missing" values be displayed? (default = FALSE) |
rowtext |
(optional) A character vector used to rename the |
row_header |
(optional) A character vector to be added to the table. |
.keep |
(optional) Should the |
.ord |
Should the ordering columns be output with the table? This is useful if a table needs to be merged or reordered in any way after build. |
... |
(optional) Named arguments to be included as columns on the table. |
A dataframe of nested results by colvar
and optional tablebyvar
.
There are a few additional variable sets added to support multiple
requirements.
The level variables (level1_
, level2_
,
level3_
) will carry down the counts for each level to every record. This
allows for easy sorting of nested groups.
The header variables
(header1
, header2
, header3
) will flag the header for each level to
ensure each level header is sorted to the top of the level.
The n
variables ("n_") provide a numeric variable containing frequency for each
colvar
. This can be used to sort and filter records.
The pct
variables ("pct_") provide a numeric variable containing percentages for
each colvar
. This can be used to sort and filter records.
adae <- data.frame( SITEID = c("100", "100", "100","200", "200", "200"), USUBJID = c("Demo1-101", "Demo1-102", "Demo1-103", "Demo1-104", "Demo1-105", "Demo1-106"), AEBODSYS = c("Cardiac disorders", "Cardiac disorders", "Respiratory, thoracic and mediastinal disorders", "Infections and infestations", "Skin and subcutaneous tissue disorders", "Infections and infestations"), AEDECOD = c("Arrhythmia supraventricular", "Cardiac failure", "Chronic obstructive pulmonary disease", "Pneumonia", "Pustular psoriasis", "Upper respiratory tract infection"), colnbr = structure( c(1L, 2L, 3L, 1L, 2L, 3L), .Label = c("Active", "Placebo", "Comparator"), class = "factor" ) ) # Frequency and percent for two levels of nesting nested_freq(adae ,colvar = "colnbr" ,rowvar = "AEBODSYS*AEDECOD" ,statlist = statlist("n (x.x%)")) # Frequency and percent for three levels of nesting (for illustrative # purpose) nested_freq(adae ,colvar = "colnbr" ,rowvar = "SITEID*AEBODSYS*AEDECOD" ,statlist = statlist("n (x.x%)")) # Cut records where pct meets threshold for a any column nested_freq(cdisc_adae ,colvar = "TRTA" ,rowvar = "AEBODSYS*AEDECOD" ,statlist = statlist("n (x.x%)", distinct = TRUE) ,cutoff = 2 ,cutoff_stat = "n") # Cut records where pct meets threshold for a specific column nested_freq(cdisc_adae ,rowvar = "AEBODSYS*AEDECOD" ,colvar = "TRTAN" ,statlist = statlist("n (x.x%)", distinct = TRUE) ,cutoff = "54 >= 2" ,cutoff_stat = "n") # Frequency and percent for two levels of nesting and sort by descending # active nested_freq(adae ,colvar = "colnbr" ,rowvar = "AEBODSYS*AEDECOD" ,statlist = statlist("n (x.x%)") ,descending = "Active") # Below illustrates how make the same calls to nested_freq() as above, using # table and # column metadata along with generate_results(). column_metadata <- tibble::tribble( ~tbltype, ~coldef, ~decode, "type1", "1", "Placebo", "type1", "2", "Low", "type1", "3", "High" ) # Frequency and percent for two levels of nesting table_metadata <- tibble::tribble( ~anbr, ~func, ~df, ~rowvar, ~tbltype, ~colvar, ~statlist, "1", "nested_freq", "cdisc_adae", "AEBODSYS*AEDECOD", "type1", "TRTP", statlist("n (x.x%)") ) #generate_results(table_metadata, #column_metadata_file = tidytlg_metadata(path) # Frequency and percent for three levels of nesting (for illustrative purpose) table_metadata <- tibble::tribble( ~anbr, ~func, ~df, ~rowvar, ~tbltype, ~colvar, ~statlist, "1", "nested_freq", "cdisc_adae", "SITEID*AEBODSYS*AEDECOD","type1", "TRTP", statlist("n (x.x%)") ) # Commented out because it takes too long # generate_results(table_metadata, column_metadata) #Cut records where pct meets threshold for a any column column_metadata <- tibble::tribble( ~tbltype, ~coldef, ~decode, "type2", "1", "Placebo", "type2", "2", "Active" ) table_metadata <- tibble::tibble( anbr = "1", func = "nested_freq", df= "cdisc_adae", rowvar = "AEBODSYS*AEDECOD", tbltype = "type2", colvar = "TRTP", statlist = statlist("n (x.x%)"), dotdotdot = "cutoff = 5" ) #generate_results(table_metadata, # column_metadata_file = tidytlg_metadata(path) # Cut records where pct meets threshold for a specific column table_metadata <- tibble::tibble( anbr = "1", func = "nested_freq", df= "cdisc_adae", rowvar = "AEBODSYS*AEDECOD", tbltype = "type2", colvar = "TRTP", statlist = statlist("n (x.x%)"), dotdotdot = "cutoff = 'col1 >= 5'" ) #generate_results(table_metadata, #column_metadata_file = tidytlg_metadata(path) # Frequency and percent for two levels of nesting and sort by descending col1 table_metadata <- tibble::tibble( anbr = "1", func = "nested_freq", df= "cdisc_adae", rowvar = "AEBODSYS*AEDECOD", tbltype = "type2", colvar = "TRTP", statlist = statlist("n (x.x%)"), dotdotdot = "descending = 'col1'" ) #generate_results(table_metadata, #column_metadata_file = tidytlg_metadata(path)
adae <- data.frame( SITEID = c("100", "100", "100","200", "200", "200"), USUBJID = c("Demo1-101", "Demo1-102", "Demo1-103", "Demo1-104", "Demo1-105", "Demo1-106"), AEBODSYS = c("Cardiac disorders", "Cardiac disorders", "Respiratory, thoracic and mediastinal disorders", "Infections and infestations", "Skin and subcutaneous tissue disorders", "Infections and infestations"), AEDECOD = c("Arrhythmia supraventricular", "Cardiac failure", "Chronic obstructive pulmonary disease", "Pneumonia", "Pustular psoriasis", "Upper respiratory tract infection"), colnbr = structure( c(1L, 2L, 3L, 1L, 2L, 3L), .Label = c("Active", "Placebo", "Comparator"), class = "factor" ) ) # Frequency and percent for two levels of nesting nested_freq(adae ,colvar = "colnbr" ,rowvar = "AEBODSYS*AEDECOD" ,statlist = statlist("n (x.x%)")) # Frequency and percent for three levels of nesting (for illustrative # purpose) nested_freq(adae ,colvar = "colnbr" ,rowvar = "SITEID*AEBODSYS*AEDECOD" ,statlist = statlist("n (x.x%)")) # Cut records where pct meets threshold for a any column nested_freq(cdisc_adae ,colvar = "TRTA" ,rowvar = "AEBODSYS*AEDECOD" ,statlist = statlist("n (x.x%)", distinct = TRUE) ,cutoff = 2 ,cutoff_stat = "n") # Cut records where pct meets threshold for a specific column nested_freq(cdisc_adae ,rowvar = "AEBODSYS*AEDECOD" ,colvar = "TRTAN" ,statlist = statlist("n (x.x%)", distinct = TRUE) ,cutoff = "54 >= 2" ,cutoff_stat = "n") # Frequency and percent for two levels of nesting and sort by descending # active nested_freq(adae ,colvar = "colnbr" ,rowvar = "AEBODSYS*AEDECOD" ,statlist = statlist("n (x.x%)") ,descending = "Active") # Below illustrates how make the same calls to nested_freq() as above, using # table and # column metadata along with generate_results(). column_metadata <- tibble::tribble( ~tbltype, ~coldef, ~decode, "type1", "1", "Placebo", "type1", "2", "Low", "type1", "3", "High" ) # Frequency and percent for two levels of nesting table_metadata <- tibble::tribble( ~anbr, ~func, ~df, ~rowvar, ~tbltype, ~colvar, ~statlist, "1", "nested_freq", "cdisc_adae", "AEBODSYS*AEDECOD", "type1", "TRTP", statlist("n (x.x%)") ) #generate_results(table_metadata, #column_metadata_file = tidytlg_metadata(path) # Frequency and percent for three levels of nesting (for illustrative purpose) table_metadata <- tibble::tribble( ~anbr, ~func, ~df, ~rowvar, ~tbltype, ~colvar, ~statlist, "1", "nested_freq", "cdisc_adae", "SITEID*AEBODSYS*AEDECOD","type1", "TRTP", statlist("n (x.x%)") ) # Commented out because it takes too long # generate_results(table_metadata, column_metadata) #Cut records where pct meets threshold for a any column column_metadata <- tibble::tribble( ~tbltype, ~coldef, ~decode, "type2", "1", "Placebo", "type2", "2", "Active" ) table_metadata <- tibble::tibble( anbr = "1", func = "nested_freq", df= "cdisc_adae", rowvar = "AEBODSYS*AEDECOD", tbltype = "type2", colvar = "TRTP", statlist = statlist("n (x.x%)"), dotdotdot = "cutoff = 5" ) #generate_results(table_metadata, # column_metadata_file = tidytlg_metadata(path) # Cut records where pct meets threshold for a specific column table_metadata <- tibble::tibble( anbr = "1", func = "nested_freq", df= "cdisc_adae", rowvar = "AEBODSYS*AEDECOD", tbltype = "type2", colvar = "TRTP", statlist = statlist("n (x.x%)"), dotdotdot = "cutoff = 'col1 >= 5'" ) #generate_results(table_metadata, #column_metadata_file = tidytlg_metadata(path) # Frequency and percent for two levels of nesting and sort by descending col1 table_metadata <- tibble::tibble( anbr = "1", func = "nested_freq", df= "cdisc_adae", rowvar = "AEBODSYS*AEDECOD", tbltype = "type2", colvar = "TRTP", statlist = statlist("n (x.x%)"), dotdotdot = "descending = 'col1'" ) #generate_results(table_metadata, #column_metadata_file = tidytlg_metadata(path)
Removes all borders from the table
no_borders(ht, matrix = NULL)
no_borders(ht, matrix = NULL)
ht |
|
matrix |
|
Other border_functions:
col_borders()
,
row_border()
,
single_border()
,
spanning_borders()
Used to swap in "" for by variables so the headers sort correctly to the top
replace_na_with_blank(x)
replace_na_with_blank(x)
x |
variable to check for NA and replace with "". |
x with NA's replaced with "". Factors will add "" as the first level.
replace_na_with_blank(c("a", "b", NA)) replace_na_with_blank(factor(c("a", "b", NA), levels = c("a", "b")))
replace_na_with_blank(c("a", "b", NA)) replace_na_with_blank(factor(c("a", "b", NA), levels = c("a", "b")))
Get Titles and Footnotes for all TLGs or one specific TLG
rmdpstitle( df, tblid, idvar = "tblid", identifier = "identifier", text = "text" )
rmdpstitle( df, tblid, idvar = "tblid", identifier = "identifier", text = "text" )
df |
dataframe with three variables; table name, row identifier (TITLE or FOOTNOTEn), and title/footnote text to display |
tblid |
character vector containing the table id, optional, used to subset df to a specific table (defaults to tblid) |
idvar |
character vector containing the variable in df that contains your table id |
identifier |
character vector containing the variable name in df that contains your record identifier (defaults to "identifier") |
text |
character vector containing the variable name in df that contains your title and footnote text (defaults to "text") |
list of length two, the first element contains the titles as a tibble and the second contains the footnotes as a list
tblid <- "TSIDEM01" titles <- tibble::tribble( ~tblid, ~identifier, ~text, "TSIDEM01", "TITLE", "Demographics Example", "TSIDEM01", "FOOTNOTE1", "Example footnote." ) title_foot <- rmdpstitle(titles, tblid) title_foot[[1]] title_foot[[2]]
tblid <- "TSIDEM01" titles <- tibble::tribble( ~tblid, ~identifier, ~text, "TSIDEM01", "TITLE", "Demographics Example", "TSIDEM01", "FOOTNOTE1", "Example footnote." ) title_foot <- rmdpstitle(titles, tblid) title_foot[[1]] title_foot[[2]]
roundSAS is an alternative rounding function, ensuring that decimals equal or bigger than 5 are rounded upwards to the nearest number and returned as character vector.
roundSAS(x, digits = 0, as_char = FALSE, na_char = NULL)
roundSAS(x, digits = 0, as_char = FALSE, na_char = NULL)
x |
Numeric vector. |
digits |
An integer specifying the number of decimal places to be displayed after rounding. Default is 0. |
as_char |
logical value indicating conversion of rounded numerical vector to character vector; default is FALSE |
na_char |
A character string indicating missing value; if not specified, "NA" is created |
At the midpoint of a decimal place (e.g. 0.5, 1.5), the round function in R rounds to the nearest even number (i.e. 0.5 is rounded to 0; 1.5 is rounded to 2), whereas SAS rounds to the nearest number (i.e. 0.5 is rounded to 1; 1.5 is rounded to 2). The roundSAS function is an alternative rounding function for R that ensures rounding to the nearest number, as done in SAS. roundSAS comes from this Stack Overflow post https://stackoverflow.com/questions/12688717/round-up-from-5
character vector of rounded values
### input data vector with midpoint decimals x <- c(-2.5, -1.5, -0.5, 0.5, 1.5, 2.5) ### rounds to integer roundSAS(x, digits = 0) ### input data vector with a missing value y <- c(8.65, 8.75, NA, 9.85, 9.95) ### rounds to tenths and label the missing value with "NE" roundSAS(y, digits = 1, as_char = TRUE, na_char = "NE")
### input data vector with midpoint decimals x <- c(-2.5, -1.5, -0.5, 0.5, 1.5, 2.5) ### rounds to integer roundSAS(x, digits = 0) ### input data vector with a missing value y <- c(8.65, 8.75, NA, 9.85, 9.95) ### rounds to tenths and label the missing value with "NE" roundSAS(y, digits = 1, as_char = TRUE, na_char = "NE")
Adds a continuous bottom border under a row
row_border(row)
row_border(row)
row |
|
Other border_functions:
col_borders()
,
no_borders()
,
single_border()
,
spanning_borders()
Adds a border under a cell
single_border(row, col)
single_border(row, col)
row |
|
col |
|
Other border_functions:
col_borders()
,
no_borders()
,
row_border()
,
spanning_borders()
Adds borders under cells that are not empty in a given row, omitting the first column of the row. The borders do not touch each other - they are separate.
spanning_borders(row, cols = c(-1))
spanning_borders(row, cols = c(-1))
row |
|
cols |
|
Other border_functions:
col_borders()
,
no_borders()
,
row_border()
,
single_border()
This will create the list object to be passed to gentlg()
You can create as
many spanning headers as you like, just add variables prefixed with span to
the column metadata.
spanning_headers(column_metadata)
spanning_headers(column_metadata)
column_metadata |
dataframe containing the column metadata that is
passed to |
List of character vectors containing column headers for an output.
column_metadata <- tibble::tribble( ~tbltype, ~coldef, ~decode, ~span1, "type1", "0", "Placebo", "", "type1", "54", "Low Dose", "Xanomeline", "type1", "81", "High Dose", "Xanomeline", "type1", "54+81", "Total Xanomeline", "" ) spanning_headers(column_metadata)
column_metadata <- tibble::tribble( ~tbltype, ~coldef, ~decode, ~span1, "type1", "0", "Placebo", "", "type1", "54", "Low Dose", "Xanomeline", "type1", "81", "High Dose", "Xanomeline", "type1", "54+81", "Total Xanomeline", "" ) spanning_headers(column_metadata)
The statlist is the interface for the presentation of data in a tidytlg table.
statlist(stats, ...)
statlist(stats, ...)
stats |
(required) A character vector of statistics to display in the table. |
... |
(optional) Additional configuration for stats. See sections below for allowable arguments. |
A statlist object that can be passed in the 'statlist' argument of
freq
, nested_freq
, or univar
.
freq()
and nested_freq()
freq()
statlists can be composed of n(count), N(denominator), and
x.x(percentage, formatted with or without a percent sign). Denominators will
include missing values if the 'display_missing' argument is TRUE, otherwise
they will be excluded. They can be arranged
in the following ways:
n
n/N
n (x.x)
n (x.x%)
n/N (x.x)
n/N (x.x%)
The following other configurations are supported:
denoms_by - Controls what groupings of variables should define the denominator. Variables should be passed as a quoted vector
distinct - A boolean value. Should the numerator reflect distinct USUBJIDs or event counts. Defaults to TRUE which captures distinct subjects.
distinct_by - A character value used to select the variable that should be used to "distinct" the freq tables. Defaults to USUBJID.
zero_denom - The string to display when there are no records found in an entire denominator group. Defaults to "-"
zero_n - The string to display when there are no records found for a numerator. Defaults to "0".
N
SUM
MEAN
GeoMEAN
SD
SE
CV
GSD
GSE
MEANSD
MEANSE
MEDIAN
MIN
MAX
RANGE
Q1
Q3
IQRANGE
MEDRANGE
MEDIQRANGE
MEAN_CI
GeoMEAN_CI
where GeoMEAN: Geometric Mean, CV: Coefficient of Variation, GSD: Geometric Std. Dev., GSE: Geometric Std. Error, MEAN_CI: Mean (95% C.I.), GeoMEAN_CI: Geometric Mean (95% C.I.). In calculating geometric statistics, if there are zero values in the inputs, zero values will be excluded before calculating geometric statistics.
freq( mtcars, colvar = "gear", rowvar = "cyl", rowbyvar = "am", statlist = statlist("n/N (x.x)", distinct = FALSE, denoms_by = c("gear", "am"), zero_denom = "_0_") )
freq( mtcars, colvar = "gear", rowvar = "cyl", rowbyvar = "am", statlist = statlist("n/N (x.x)", distinct = FALSE, denoms_by = c("gear", "am"), zero_denom = "_0_") )
Metadata describing the data, functions and arguments needed to produce your results.
table_metadata
table_metadata
A data frame with one row per function call and 16 variables:
name of the function you wish to call
data frame to pass to the function call
filter df records, this is passed directly to filter, ex. "AESER == 'Y'"
variable being summarized that will pass to the function call
row label text to display in the table
header text to display above row summary
list of statistics in the analysis, see individual functions for what is available per function (eg. "N, n (x.x)")
variable used to determine the columns of the table
decimal precision
repeat rowvar summary by this variable/s, comma separated for multiple (eg. "ETHNIC, AGEGR1")
repeat the entire table summary by this variable/s, comma separated for multiple (eg. "ETHNIC, AGEGR1")
used to set denominators if df does not contain all required records
Helper functions for returning files used in gentlg
tidytlg_titles(path) tidytlg_metadata(path)
tidytlg_titles(path) tidytlg_metadata(path)
path |
Working directory of the project |
A character vector to the requested file.
tlgsetup is useful for pre-processing total columns and columns composed of
other columns. tlgsetup is called internally by generate_results()
and can
be run manually for custom tables.
tlgsetup( df, var, column_metadata_file = NULL, column_metadata = NULL, tbltype = NULL )
tlgsetup( df, var, column_metadata_file = NULL, column_metadata = NULL, tbltype = NULL )
df |
dataframe of records for analysis |
var |
character vector that identifies the numeric column/treatment variable |
column_metadata_file |
A file containing the column metadata. Read in
with |
column_metadata |
A dataframe containing the column metadata. This will
be used in place of |
tbltype |
A value used to subset the |
dataframe with observations added to support the column type as well
as the factor variable colnbr
which is used as our new column summary
variable. Regardless of if a coldef
exists in data, the column will exist in
the table.
df <- tibble::tribble( ~TRT01AN, ~USUBJID, 0, "A", 54, "B", 81, "C" ) tlgsetup(df, "TRT01AN", column_metadata = column_metadata) # Using a dataframe of column metadata column_metadata <- tibble::tribble( ~tbltype, ~coldef, ~decode, ~span1, "type1", "0", "Placebo", "", "type1", "54", "Low Dose", "Xanomeline", "type1", "81", "High Dose", "Xanomeline", "type1", "54+81", "Total Xanomeline", "" ) tlgsetup(df, "TRT01AN", column_metadata = column_metadata)
df <- tibble::tribble( ~TRT01AN, ~USUBJID, 0, "A", 54, "B", 81, "C" ) tlgsetup(df, "TRT01AN", column_metadata = column_metadata) # Using a dataframe of column metadata column_metadata <- tibble::tribble( ~tbltype, ~coldef, ~decode, ~span1, "type1", "0", "Placebo", "", "type1", "54", "Low Dose", "Xanomeline", "type1", "81", "High Dose", "Xanomeline", "type1", "54+81", "Total Xanomeline", "" ) tlgsetup(df, "TRT01AN", column_metadata = column_metadata)
Univariate statitstics for a variables by treatment and/or group.
univar( df, colvar = NULL, tablebyvar = NULL, rowvar = NULL, rowbyvar = NULL, statlist = getOption("tidytlg.univar.statlist.default"), decimal = 1, precisionby = NULL, precisionon = NULL, wide = FALSE, alpha = 0.05, rowtext = NULL, row_header = NULL, .keep = TRUE, .ord = FALSE, ... )
univar( df, colvar = NULL, tablebyvar = NULL, rowvar = NULL, rowbyvar = NULL, statlist = getOption("tidytlg.univar.statlist.default"), decimal = 1, precisionby = NULL, precisionon = NULL, wide = FALSE, alpha = 0.05, rowtext = NULL, row_header = NULL, .keep = TRUE, .ord = FALSE, ... )
df |
(required) dataframe containing records to summarize by treatment |
colvar |
(required) character vector of the treatment variable within the dataframe |
tablebyvar |
(optional) repeat entire table by variable within df |
rowvar |
(required) character vector of variable to summarize within the dataframe |
rowbyvar |
(optional) repeat |
statlist |
(optional) statlist object of stats to keep (default = statlist(c("N", "MEANSD", "MEDIAN", "RANGE", "IQRANGE"))) |
decimal |
(optional) decimal precision root level, when using
|
precisionby |
(optional) vector of by variable(s) to use when calculating parameter based precision |
precisionon |
(optional) variable to use when calculating parameter
based precision. If |
wide |
(optional) logical indicating to convert labels to column and columns to labels (default = FALSE) |
alpha |
(optional) alpha level for 2-sided confidence interval (default = 0.05) |
rowtext |
(optional) A text string to replace the |
row_header |
(optional) A row to add as a header for the table. |
.keep |
(optional) Should the |
.ord |
Should the ordering columns be output with the table? This is useful if a table needs to be merged or reordered in any way after build. |
... |
(optional) Named arguments to be included as columns on the table. |
dataframe of results
adsl <- structure( list( USUBJID = c("DEMO-101", "DEMO-102", "DEMO-103", "DEMO-104", "DEMO-105", "DEMO-106"), AGE = c(59, 51, 57, 65, 21, 80), SEX = c("F", "M", "F", "M", "F", "M"), WEIGHTBL = c(83.6, 75, 84, 90, 65, 70), colnbr = structure( c(1L, 3L, 2L, 2L, 3L, 1L), .Label = c("Placebo", "Low", "High"), class = "factor" ) ), row.names = c(NA, 6L), class = "data.frame" ) # N, Mean(SD), Median, Range, IQ Range for a rowvar by colvar univar(adsl ,colvar = "colnbr" ,rowvar = "AGE") # N and Mean for a rowvar by colvar univar(adsl ,colvar = "colnbr" ,rowvar = "AGE" ,statlist = statlist(c("N", "MEAN"))) # N and Mean for a rowvar by colvar and a by variable univar(adsl ,colvar = "colnbr" ,rowvar = "AGE" ,rowbyvar = "SEX" ,statlist = statlist(c("N", "MEAN"))) # Below illustrates how make the same calls to univar() as above, using table # and column metadata # along with generate_results(). column_metadata <- tibble::tribble( ~tbltype, ~coldef, ~decode, "type1", "0", "Placebo", "type1", "54", "Low", "type1", "81", "High" ) # N, Mean(SD), Median, Range, IQ Range for a rowvar by colvar table_metadata <- tibble::tribble( ~anbr, ~func, ~df, ~rowvar, ~tbltype, ~colvar, "1", "univar", "cdisc_adae", "AGE", "type1", "TRTA" ) generate_results(table_metadata, column_metadata = column_metadata, tbltype = "type1") # N and Mean for a rowvar by colvar table_metadata <- tibble::tribble( ~anbr, ~func, ~df, ~rowvar, ~tbltype, ~colvar, ~statlist, "1", "univar", "cdisc_adae", "AGE", "type1", "TRTA", statlist(c("N","MEAN")) ) generate_results(table_metadata, column_metadata = column_metadata, tbltype = "type1") # N and Mean for a rowvar by colvar and a by variable table_metadata <- tibble::tribble( ~anbr, ~func, ~df, ~rowvar, ~tbltype, ~colvar, ~statlist, ~by, "1", "univar", "cdisc_adae", "AGE", "type1", "TRTA", statlist(c("N","MEAN")), "SEX" ) generate_results(table_metadata, column_metadata = column_metadata, tbltype = "type1")
adsl <- structure( list( USUBJID = c("DEMO-101", "DEMO-102", "DEMO-103", "DEMO-104", "DEMO-105", "DEMO-106"), AGE = c(59, 51, 57, 65, 21, 80), SEX = c("F", "M", "F", "M", "F", "M"), WEIGHTBL = c(83.6, 75, 84, 90, 65, 70), colnbr = structure( c(1L, 3L, 2L, 2L, 3L, 1L), .Label = c("Placebo", "Low", "High"), class = "factor" ) ), row.names = c(NA, 6L), class = "data.frame" ) # N, Mean(SD), Median, Range, IQ Range for a rowvar by colvar univar(adsl ,colvar = "colnbr" ,rowvar = "AGE") # N and Mean for a rowvar by colvar univar(adsl ,colvar = "colnbr" ,rowvar = "AGE" ,statlist = statlist(c("N", "MEAN"))) # N and Mean for a rowvar by colvar and a by variable univar(adsl ,colvar = "colnbr" ,rowvar = "AGE" ,rowbyvar = "SEX" ,statlist = statlist(c("N", "MEAN"))) # Below illustrates how make the same calls to univar() as above, using table # and column metadata # along with generate_results(). column_metadata <- tibble::tribble( ~tbltype, ~coldef, ~decode, "type1", "0", "Placebo", "type1", "54", "Low", "type1", "81", "High" ) # N, Mean(SD), Median, Range, IQ Range for a rowvar by colvar table_metadata <- tibble::tribble( ~anbr, ~func, ~df, ~rowvar, ~tbltype, ~colvar, "1", "univar", "cdisc_adae", "AGE", "type1", "TRTA" ) generate_results(table_metadata, column_metadata = column_metadata, tbltype = "type1") # N and Mean for a rowvar by colvar table_metadata <- tibble::tribble( ~anbr, ~func, ~df, ~rowvar, ~tbltype, ~colvar, ~statlist, "1", "univar", "cdisc_adae", "AGE", "type1", "TRTA", statlist(c("N","MEAN")) ) generate_results(table_metadata, column_metadata = column_metadata, tbltype = "type1") # N and Mean for a rowvar by colvar and a by variable table_metadata <- tibble::tribble( ~anbr, ~func, ~df, ~rowvar, ~tbltype, ~colvar, ~statlist, ~by, "1", "univar", "cdisc_adae", "AGE", "type1", "TRTA", statlist(c("N","MEAN")), "SEX" ) generate_results(table_metadata, column_metadata = column_metadata, tbltype = "type1")