Title: | Exploratory Web Apps for Analyzing Clinical Trials Data |
---|---|
Description: | A 'shiny' based interactive exploration framework for analyzing clinical trials data. 'teal' currently provides a dynamic filtering facility and different data viewers. 'teal' 'shiny' applications are built using standard 'shiny' modules. |
Authors: | Dawid Kaledkowski [aut, cre] , Pawel Rucki [aut], Aleksander Chlebowski [aut] , Andre Verissimo [aut] , Kartikeya Kirar [aut], Vedha Viyash [aut], Marcin Kosinski [aut], Adrian Waddell [aut], Chendi Liao [rev], Dony Unardi [rev], Nikolas Burkoff [aut], Mahmoud Hallal [aut], Maciej Nasinski [aut], Konrad Pagacz [aut], Junlue Zhao [aut], Tadeusz Lewandowski [aut], F. Hoffmann-La Roche AG [cph, fnd], Maximilian Mordig [ctb] |
Maintainer: | Dawid Kaledkowski <[email protected]> |
License: | Apache License 2.0 |
Version: | 0.15.2.9101 |
Built: | 2025-01-15 11:21:07 UTC |
Source: | https://github.com/insightsengineering/teal |
A helper function to create the browser title along with a logo.
build_app_title( title = "teal app", favicon = "https://raw.githubusercontent.com/insightsengineering/hex-stickers/main/PNG/nest.png" )
build_app_title( title = "teal app", favicon = "https://raw.githubusercontent.com/insightsengineering/hex-stickers/main/PNG/nest.png" )
title |
( |
favicon |
( |
A shiny.tag
containing the element that adds the title and logo to the shiny
app.
teal
moduleexample_module( label = "example teal module", datanames = "all", transformators = list(), decorators = NULL )
example_module( label = "example teal module", datanames = "all", transformators = list(), decorators = NULL )
This module creates an object called object
that can be modified with decorators.
The object
is determined by what's selected in Choose a dataset
input in UI.
The object can be anything that can be handled by renderPrint()
.
See the vignette("decorate-modules-output", package = "teal")
or teal_transform_module
to read more about decorators.
A teal
module which can be included in the modules
argument to init()
.
app <- init( data = teal_data(IRIS = iris, MTCARS = mtcars), modules = example_module() ) if (interactive()) { shinyApp(app$ui, app$server) }
app <- init( data = teal_data(IRIS = iris, MTCARS = mtcars), modules = example_module() ) if (interactive()) { shinyApp(app$ui, app$server) }
shiny
appEnd-users: This is the most important function for you to start a
teal
app that is composed of teal
modules.
init( data, modules, filter = teal_slices(), title = build_app_title(), header = tags$p(), footer = tags$p(), id = character(0), landing_popup = NULL )
init( data, modules, filter = teal_slices(), title = build_app_title(), header = tags$p(), footer = tags$p(), id = character(0), landing_popup = NULL )
data |
( |
modules |
( |
filter |
( |
title |
( |
header |
( |
footer |
( |
id |
( |
landing_popup |
( |
Named list containing server and UI functions.
app <- init( data = within( teal_data(), { new_iris <- transform(iris, id = seq_len(nrow(iris))) new_mtcars <- transform(mtcars, id = seq_len(nrow(mtcars))) } ), modules = modules( module( label = "data source", server = function(input, output, session, data) {}, ui = function(id, ...) tags$div(p("information about data source")), datanames = "all" ), example_module(label = "example teal module"), module( "Iris Sepal.Length histogram", server = function(input, output, session, data) { output$hist <- renderPlot( hist(data()[["new_iris"]]$Sepal.Length) ) }, ui = function(id, ...) { ns <- NS(id) plotOutput(ns("hist")) }, datanames = "new_iris" ) ), filter = teal_slices( teal_slice(dataname = "new_iris", varname = "Species"), teal_slice(dataname = "new_iris", varname = "Sepal.Length"), teal_slice(dataname = "new_mtcars", varname = "cyl"), exclude_varnames = list(new_iris = c("Sepal.Width", "Petal.Width")), module_specific = TRUE, mapping = list( `example teal module` = "new_iris Species", `Iris Sepal.Length histogram` = "new_iris Species", global_filters = "new_mtcars cyl" ) ), title = "App title", header = tags$h1("Sample App"), footer = tags$p("Sample footer") ) if (interactive()) { shinyApp(app$ui, app$server) }
app <- init( data = within( teal_data(), { new_iris <- transform(iris, id = seq_len(nrow(iris))) new_mtcars <- transform(mtcars, id = seq_len(nrow(mtcars))) } ), modules = modules( module( label = "data source", server = function(input, output, session, data) {}, ui = function(id, ...) tags$div(p("information about data source")), datanames = "all" ), example_module(label = "example teal module"), module( "Iris Sepal.Length histogram", server = function(input, output, session, data) { output$hist <- renderPlot( hist(data()[["new_iris"]]$Sepal.Length) ) }, ui = function(id, ...) { ns <- NS(id) plotOutput(ns("hist")) }, datanames = "new_iris" ) ), filter = teal_slices( teal_slice(dataname = "new_iris", varname = "Species"), teal_slice(dataname = "new_iris", varname = "Sepal.Length"), teal_slice(dataname = "new_mtcars", varname = "cyl"), exclude_varnames = list(new_iris = c("Sepal.Width", "Petal.Width")), module_specific = TRUE, mapping = list( `example teal module` = "new_iris Species", `Iris Sepal.Length histogram` = "new_iris Species", global_filters = "new_mtcars cyl" ) ), title = "App title", header = tags$h1("Sample App"), footer = tags$p("Sample footer") ) if (interactive()) { shinyApp(app$ui, app$server) }
Creates a landing welcome popup for teal
applications.
This module is used to display a popup dialog when the application starts. The dialog blocks access to the application and must be closed with a button before the application can be viewed.
landing_popup_module( label = "Landing Popup", title = NULL, content = NULL, buttons = modalButton("Accept") )
landing_popup_module( label = "Landing Popup", title = NULL, content = NULL, buttons = modalButton("Accept") )
label |
( |
title |
( |
content |
( |
buttons |
( |
A teal_module
(extended with teal_landing_module
class) to be used in teal
applications.
app1 <- init( data = teal_data(iris = iris), modules = modules( example_module() ), landing_popup = landing_popup_module( content = "A place for the welcome message or a disclaimer statement.", buttons = modalButton("Proceed") ) ) if (interactive()) { shinyApp(app1$ui, app1$server) } app2 <- init( data = teal_data(iris = iris), modules = modules( example_module() ), landing_popup = landing_popup_module( title = "Welcome", content = tags$b( "A place for the welcome message or a disclaimer statement.", style = "color: red;" ), buttons = tagList( modalButton("Proceed"), actionButton("read", "Read more", onclick = "window.open('http://google.com', '_blank')" ), actionButton("close", "Reject", onclick = "window.close()") ) ) ) if (interactive()) { shinyApp(app2$ui, app2$server) }
app1 <- init( data = teal_data(iris = iris), modules = modules( example_module() ), landing_popup = landing_popup_module( content = "A place for the welcome message or a disclaimer statement.", buttons = modalButton("Proceed") ) ) if (interactive()) { shinyApp(app1$ui, app1$server) } app2 <- init( data = teal_data(iris = iris), modules = modules( example_module() ), landing_popup = landing_popup_module( title = "Welcome", content = tags$b( "A place for the welcome message or a disclaimer statement.", style = "color: red;" ), buttons = tagList( modalButton("Proceed"), actionButton("read", "Read more", onclick = "window.open('http://google.com', '_blank')" ), actionButton("close", "Reject", onclick = "window.close()") ) ) ) if (interactive()) { shinyApp(app2$ui, app2$server) }
A factory function to simplify creation of a teal_transform_module
's server. Specified expr
is wrapped in a shiny module function and output can be passed to the server
argument in
teal_transform_module()
call. Such a server function can be linked with ui and values from the
inputs can be used in the expression. Object names specified in the expression will be substituted
with the value of the respective input (matched by the name) - for example in
expression(graph <- graph + ggtitle(title))
object title
will be replaced with the value of
input$title
.
make_teal_transform_server(expr)
make_teal_transform_server(expr)
expr |
( |
function(id, data)
returning shiny
module
trim_iris <- teal_transform_module( label = "Simplified interactive transformator for iris", datanames = "iris", ui = function(id) { ns <- NS(id) numericInput(ns("n_rows"), "Subset n rows", value = 6, min = 1, max = 150, step = 1) }, server = make_teal_transform_server(expression(iris <- head(iris, n_rows))) ) app <- init( data = teal_data(iris = iris), modules = example_module(transformators = trim_iris) ) if (interactive()) { shinyApp(app$ui, app$server) }
trim_iris <- teal_transform_module( label = "Simplified interactive transformator for iris", datanames = "iris", ui = function(id) { ns <- NS(id) numericInput(ns("n_rows"), "Subset n rows", value = 6, min = 1, max = 150, step = 1) }, server = make_teal_transform_server(expression(iris <- head(iris, n_rows))) ) app <- init( data = teal_data(iris = iris), modules = example_module(transformators = trim_iris) ) if (interactive()) { shinyApp(app$ui, app$server) }
teal
main module
Module to create a teal
app. This module can be called directly instead of init()
and
included in your custom application. Please note that init()
adds reporter_previewer_module
automatically, which is not a case when calling ui/srv_teal
directly.
ui_teal( id, modules, title = build_app_title(), header = tags$p(), footer = tags$p() ) srv_teal(id, data, modules, filter = teal_slices())
ui_teal( id, modules, title = build_app_title(), header = tags$p(), footer = tags$p() ) srv_teal(id, data, modules, filter = teal_slices())
id |
( |
modules |
( |
title |
( |
header |
( |
footer |
( |
data |
( |
filter |
( |
Module is responsible for creating the main shiny
app layout and initializing all the necessary
components. This module establishes reactive connection between the input data
and every other
component in the app. Reactive change of the data
passed as an argument, reloads the app and
possibly keeps all input settings the same so the user can continue where one left off.
teal
applicationThis module supports multiple data inputs but eventually, they are all converted to reactive
returning teal_data
in this module. On this reactive teal_data
object several actions are
performed:
data loading in module_init_data
data filtering in module_filter_data
data transformation in module_transform_data
teal
is designed in such way that app will never crash if the error is introduced in any
custom shiny
module provided by app developer (e.g. teal_data_module()
, teal_transform_module()
).
If any module returns a failing object, the app will halt the evaluation and display a warning message.
App user should always have a chance to fix the improper input and continue without restarting the session.
NULL
invisibly
teal
Please use module_teal
instead.
ui_teal_with_splash( id, data, title = build_app_title(), header = tags$p(), footer = tags$p() ) srv_teal_with_splash(id, data, modules, filter = teal_slices())
ui_teal_with_splash( id, data, title = build_app_title(), header = tags$p(), footer = tags$p() ) srv_teal_with_splash(id, data, modules, filter = teal_slices())
id |
( |
data |
( |
title |
( |
header |
( |
footer |
( |
modules |
( |
filter |
( |
Returns a reactive
expression containing a teal_data
object when data is loaded or NULL
when it is not.
reactive
teal_data
Module calls teal_transform_module()
in sequence so that reactive teal_data
output
from one module is handed over to the following module's input.
ui_transform_teal_data(id, transformators, class = "well") srv_transform_teal_data( id, data, transformators, modules = NULL, is_transform_failed = reactiveValues() )
ui_transform_teal_data(id, transformators, class = "well") srv_transform_teal_data( id, data, transformators, modules = NULL, is_transform_failed = reactiveValues() )
id |
( |
transformators |
( |
class |
(character(1)) CSS class to be added in the |
data |
( |
modules |
( |
is_transform_failed |
( |
reactive
teal_data
TealReportCard
creation and customizationThis function generates a report card with a title, an optional description, and the option to append the filter state list.
report_card_template( title, label, description = NULL, with_filter, filter_panel_api )
report_card_template( title, label, description = NULL, with_filter, filter_panel_api )
title |
( |
label |
( |
description |
( |
with_filter |
( |
filter_panel_api |
( |
(TealReportCard
) populated with a title, description and filter state.
teal
module for previewing a reportThis function wraps teal.reporter::reporter_previewer_ui()
and
teal.reporter::reporter_previewer_srv()
into a teal_module
to be
used in teal
applications.
If you are creating a teal
application using init()
then this
module will be added to your application automatically if any of your teal_modules
support report generation.
reporter_previewer_module(label = "Report previewer", server_args = list())
reporter_previewer_module(label = "Report previewer", server_args = list())
label |
( |
server_args |
(named |
teal_module
(extended with teal_module_previewer
class) containing the teal.reporter
previewer functionality.
R
code modalUse the shiny::showModal()
function to show the R
code inside.
show_rcode_modal(title = NULL, rcode, session = getDefaultReactiveDomain())
show_rcode_modal(title = NULL, rcode, session = getDefaultReactiveDomain())
title |
( |
rcode |
( |
session |
( |
tdata
objectRecent changes in teal
cause modules to fail because modules expect a tdata
object
to be passed to the data
argument but instead they receive a teal_data
object,
which is additionally wrapped in a reactive expression in the server functions.
In order to easily adapt such modules without a proper refactor,
use this function to downgrade the data
argument.
new_tdata(...) tdata2env(...) get_code_tdata(...) ## S3 method for class 'tdata' join_keys(...) get_metadata(...) as_tdata(...)
new_tdata(...) tdata2env(...) get_code_tdata(...) ## S3 method for class 'tdata' join_keys(...) get_metadata(...) as_tdata(...)
... |
ignored |
nothing
teal
applicationsCreate a teal_data_module
object and evaluate code on it with history tracking.
teal_data_module(ui, server, label = "data module", once = TRUE) ## S4 method for signature 'teal_data_module,character' eval_code(object, code) ## S3 method for class 'teal_data_module' within(data, expr, ...)
teal_data_module(ui, server, label = "data module", once = TRUE) ## S4 method for signature 'teal_data_module,character' eval_code(object, code) ## S3 method for class 'teal_data_module' within(data, expr, ...)
ui |
( |
server |
( |
label |
( |
once |
( |
object |
( |
code |
( |
data |
( |
expr |
( |
... |
See |
teal_data_module
creates a shiny
module to interactively supply or modify data in a teal
application.
The module allows for running any code (creation and some modification) after the app starts or reloads.
The body of the server function will be run in the app rather than in the global environment.
This means it will be run every time the app starts, so use sparingly.
Pass this module instead of a teal_data
object in a call to init()
.
Note that the server function must always return a teal_data
object wrapped in a reactive expression.
See vignette vignette("data-as-shiny-module", package = "teal")
for more details.
eval_code
evaluates given code in the environment of the teal_data
object created by the teal_data_module
.
The code is added to the @code
slot of the teal_data
.
within
is a convenience function for evaluating inline code inside the environment of a teal_data_module
.
It accepts only inline expressions (both simple and compound) and allows for injecting values into expr
through
the ...
argument: as name:value
pairs are passed to ...
, name
in expr
will be replaced with value.
teal_data_module
returns a list of class teal_data_module
containing two elements, ui
and
server
provided via arguments.
eval_code
returns a teal_data_module
object with a delayed evaluation of code
when the module is run.
within
returns a teal_data_module
object with a delayed evaluation of expr
when the module is run.
teal.data::teal_data
, teal.code::qenv()
tdm <- teal_data_module( ui = function(id) { ns <- NS(id) actionButton(ns("submit"), label = "Load data") }, server = function(id) { moduleServer(id, function(input, output, session) { eventReactive(input$submit, { data <- within( teal_data(), { dataset1 <- iris dataset2 <- mtcars } ) data }) }) } ) eval_code(tdm, "dataset1 <- subset(dataset1, Species == 'virginica')") within(tdm, dataset1 <- subset(dataset1, Species == "virginica")) # use additional parameter for expression value substitution. valid_species <- "versicolor" within(tdm, dataset1 <- subset(dataset1, Species %in% species), species = valid_species)
tdm <- teal_data_module( ui = function(id) { ns <- NS(id) actionButton(ns("submit"), label = "Load data") }, server = function(id) { moduleServer(id, function(input, output, session) { eventReactive(input$submit, { data <- within( teal_data(), { dataset1 <- iris dataset2 <- mtcars } ) data }) }) } ) eval_code(tdm, "dataset1 <- subset(dataset1, Species == 'virginica')") within(tdm, dataset1 <- subset(dataset1, Species == "virginica")) # use additional parameter for expression value substitution. valid_species <- "versicolor" within(tdm, dataset1 <- subset(dataset1, Species %in% species), species = valid_species)
teal_module
and teal_modules
objects
Create a nested tab structure to embed modules in a teal
application.
module( label = "module", server = function(id, data, ...) moduleServer(id, function(input, output, session) NULL), ui = function(id, ...) tags$p(paste0("This module has no UI (id: ", id, " )")), filters, datanames = "all", server_args = NULL, ui_args = NULL, transformators = list() ) modules(..., label = "root") ## S3 method for class 'teal_module' format( x, is_last = FALSE, parent_prefix = "", what = c("datasets", "properties", "ui_args", "server_args", "transformators"), ... ) ## S3 method for class 'teal_modules' format(x, is_root = TRUE, is_last = FALSE, parent_prefix = "", ...) ## S3 method for class 'teal_module' print(x, ...) ## S3 method for class 'teal_modules' print(x, ...)
module( label = "module", server = function(id, data, ...) moduleServer(id, function(input, output, session) NULL), ui = function(id, ...) tags$p(paste0("This module has no UI (id: ", id, " )")), filters, datanames = "all", server_args = NULL, ui_args = NULL, transformators = list() ) modules(..., label = "root") ## S3 method for class 'teal_module' format( x, is_last = FALSE, parent_prefix = "", what = c("datasets", "properties", "ui_args", "server_args", "transformators"), ... ) ## S3 method for class 'teal_modules' format(x, is_root = TRUE, is_last = FALSE, parent_prefix = "", ...) ## S3 method for class 'teal_module' print(x, ...) ## S3 method for class 'teal_modules' print(x, ...)
label |
( |
server |
(
|
ui |
(
|
filters |
( |
datanames |
(
|
server_args |
(named |
ui_args |
(named |
transformators |
( |
... |
|
x |
( |
is_last |
( |
parent_prefix |
( |
what |
( |
is_root |
( |
module()
creates an instance of a teal_module
that can be placed in a teal
application.
modules()
shapes the structure of a the application by organizing teal_module
within the navigation panel.
It wraps teal_module
and teal_modules
objects in a teal_modules
object,
which results in a nested structure corresponding to the nested tabs in the final application.
Note that for modules()
label
comes after ...
, so it must be passed as a named argument,
otherwise it will be captured by ...
.
The labels "global_filters"
and "Report previewer"
are reserved
because they are used by the mapping
argument of teal_slices()
and the report previewer module reporter_previewer_module()
, respectively.
module()
returns an object of class teal_module
.
modules()
returns a teal_modules
object which contains following fields:
label
: taken from the label
argument.
children
: a list containing objects passed in ...
. List elements are named after
their label
attribute converted to a valid shiny
id.
teal_module
:The datanames
argument controls which datasets are used by the module’s server. These datasets,
passed via server's data
argument, are the only ones shown in the module's tab.
When datanames
is set to "all"
, all datasets in the data object are treated as relevant.
However, this may include unnecessary datasets, such as:
Proxy variables for column modifications
Temporary datasets used to create final ones
Connection objects
Datasets which name is prefixed in teal_data
by the dot (.
) are not displayed in the teal
application.
Please see the "Hidden datasets" section in 'vignette("including-data-in-teal-applications").
datanames
with transformators
When transformators are specified, their datanames
are added to the module’s datanames
, which
changes the behavior as follows:
If module(datanames)
is NULL
and the transformators
have defined datanames
, the sidebar
will appear showing the transformators
' datasets, instead of being hidden.
If module(datanames)
is set to specific values and any transformator
has datanames = "all"
,
the module may receive extra datasets that could be unnecessary
library(shiny) module_1 <- module( label = "a module", server = function(id, data) { moduleServer( id, module = function(input, output, session) { output$data <- renderDataTable(data()[["iris"]]) } ) }, ui = function(id) { ns <- NS(id) tagList(dataTableOutput(ns("data"))) }, datanames = "all" ) module_2 <- module( label = "another module", server = function(id) { moduleServer( id, module = function(input, output, session) { output$text <- renderText("Another Module") } ) }, ui = function(id) { ns <- NS(id) tagList(textOutput(ns("text"))) }, datanames = NULL ) modules <- modules( label = "modules", modules( label = "nested modules", module_1 ), module_2 ) app <- init( data = teal_data(iris = iris), modules = modules ) if (interactive()) { shinyApp(app$ui, app$server) } mod <- module( label = "My Custom Module", server = function(id, data, ...) {}, ui = function(id, ...) {}, datanames = c("ADSL", "ADTTE"), transformators = list(), ui_args = list(a = 1, b = "b"), server_args = list(x = 5, y = list(p = 1)) ) cat(format(mod)) custom_module <- function( label = "label", ui_args = NULL, server_args = NULL, datanames = "all", transformators = list(), bk = FALSE) { ans <- module( label, server = function(id, data, ...) {}, ui = function(id, ...) { }, datanames = datanames, transformators = transformators, ui_args = ui_args, server_args = server_args ) attr(ans, "teal_bookmarkable") <- bk ans } dummy_transformator <- teal_transform_module( label = "Dummy Transform", ui = function(id) div("(does nothing)"), server = function(id, data) { moduleServer(id, function(input, output, session) data) } ) plot_transformator <- teal_transform_module( label = "Plot Settings", ui = function(id) div("(does nothing)"), server = function(id, data) { moduleServer(id, function(input, output, session) data) } ) complete_modules <- modules( custom_module( label = "Data Overview", datanames = c("ADSL", "ADAE", "ADVS"), ui_args = list( view_type = "table", page_size = 10, filters = c("ARM", "SEX", "RACE") ), server_args = list( cache = TRUE, debounce = 1000 ), transformators = list(dummy_transformator), bk = TRUE ), modules( label = "Nested 1", custom_module( label = "Interactive Plots", datanames = c("ADSL", "ADVS"), ui_args = list( plot_type = c("scatter", "box", "line"), height = 600, width = 800, color_scheme = "viridis" ), server_args = list( render_type = "svg", cache_plots = TRUE ), transformators = list(dummy_transformator, plot_transformator), bk = TRUE ), modules( label = "Nested 2", custom_module( label = "Summary Statistics", datanames = "ADSL", ui_args = list( stats = c("mean", "median", "sd", "range"), grouping = c("ARM", "SEX") ) ), modules( label = "Labeled nested modules", custom_module( label = "Subgroup Analysis", datanames = c("ADSL", "ADAE"), ui_args = list( subgroups = c("AGE", "SEX", "RACE"), analysis_type = "stratified" ), bk = TRUE ) ), modules(custom_module(label = "Subgroup Analysis in non-labled modules")) ) ), custom_module("Non-nested module") ) cat(format(complete_modules)) cat(format(complete_modules, what = c("ui_args", "server_args", "transformators")))
library(shiny) module_1 <- module( label = "a module", server = function(id, data) { moduleServer( id, module = function(input, output, session) { output$data <- renderDataTable(data()[["iris"]]) } ) }, ui = function(id) { ns <- NS(id) tagList(dataTableOutput(ns("data"))) }, datanames = "all" ) module_2 <- module( label = "another module", server = function(id) { moduleServer( id, module = function(input, output, session) { output$text <- renderText("Another Module") } ) }, ui = function(id) { ns <- NS(id) tagList(textOutput(ns("text"))) }, datanames = NULL ) modules <- modules( label = "modules", modules( label = "nested modules", module_1 ), module_2 ) app <- init( data = teal_data(iris = iris), modules = modules ) if (interactive()) { shinyApp(app$ui, app$server) } mod <- module( label = "My Custom Module", server = function(id, data, ...) {}, ui = function(id, ...) {}, datanames = c("ADSL", "ADTTE"), transformators = list(), ui_args = list(a = 1, b = "b"), server_args = list(x = 5, y = list(p = 1)) ) cat(format(mod)) custom_module <- function( label = "label", ui_args = NULL, server_args = NULL, datanames = "all", transformators = list(), bk = FALSE) { ans <- module( label, server = function(id, data, ...) {}, ui = function(id, ...) { }, datanames = datanames, transformators = transformators, ui_args = ui_args, server_args = server_args ) attr(ans, "teal_bookmarkable") <- bk ans } dummy_transformator <- teal_transform_module( label = "Dummy Transform", ui = function(id) div("(does nothing)"), server = function(id, data) { moduleServer(id, function(input, output, session) data) } ) plot_transformator <- teal_transform_module( label = "Plot Settings", ui = function(id) div("(does nothing)"), server = function(id, data) { moduleServer(id, function(input, output, session) data) } ) complete_modules <- modules( custom_module( label = "Data Overview", datanames = c("ADSL", "ADAE", "ADVS"), ui_args = list( view_type = "table", page_size = 10, filters = c("ARM", "SEX", "RACE") ), server_args = list( cache = TRUE, debounce = 1000 ), transformators = list(dummy_transformator), bk = TRUE ), modules( label = "Nested 1", custom_module( label = "Interactive Plots", datanames = c("ADSL", "ADVS"), ui_args = list( plot_type = c("scatter", "box", "line"), height = 600, width = 800, color_scheme = "viridis" ), server_args = list( render_type = "svg", cache_plots = TRUE ), transformators = list(dummy_transformator, plot_transformator), bk = TRUE ), modules( label = "Nested 2", custom_module( label = "Summary Statistics", datanames = "ADSL", ui_args = list( stats = c("mean", "median", "sd", "range"), grouping = c("ARM", "SEX") ) ), modules( label = "Labeled nested modules", custom_module( label = "Subgroup Analysis", datanames = c("ADSL", "ADAE"), ui_args = list( subgroups = c("AGE", "SEX", "RACE"), analysis_type = "stratified" ), bk = TRUE ) ), modules(custom_module(label = "Subgroup Analysis in non-labled modules")) ) ), custom_module("Non-nested module") ) cat(format(complete_modules)) cat(format(complete_modules, what = c("ui_args", "server_args", "transformators")))
teal
transformations and output customizationteal_transform_module
provides a shiny
module that enables data transformations within a teal
application
and allows for customization of outputs generated by modules.
teal_transform_module( ui = NULL, server = function(id, data) data, label = "transform module", datanames = "all" )
teal_transform_module( ui = NULL, server = function(id, data) data, label = "transform module", datanames = "all" )
ui |
( |
server |
( |
label |
( |
datanames |
( |
teal
Data transformations occur after data has been filtered in teal
.
The transformed data is then passed to the server
of teal_module()
and managed by teal
's internal processes.
The primary advantage of teal_transform_module
over custom modules is in its error handling, where all warnings and
errors are managed by teal
, allowing developers to focus on transformation logic.
For more details, see the vignette: vignette("data-transform-as-shiny-module", package = "teal")
.
teal_transform_module
also allows developers to modify any object created within teal.data::teal_data
.
This means you can use it to customize not only datasets but also tables, listings, and graphs.
Some teal_modules
permit developers to inject custom shiny
modules to enhance displayed outputs.
To manage these decorators
within your module, use ui_transform_teal_data()
and srv_transform_teal_data()
.
(For further guidance on managing decorators, refer to ui_args
and srv_args
in the vignette documentation.)
See the vignette vignette("decorate-modules-output", package = "teal")
for additional examples.
server
as a languageThe server
function in teal_transform_module
must return a reactive teal.data::teal_data
object.
For simple transformations without complex reactivity, the server
function might look like this:s
function(id, data) { moduleServer(id, function(input, output, session) { reactive({ within( data(), expr = x <- subset(x, col == level), level = input$level ) }) }) }
The example above can be simplified using make_teal_transform_server
, where level
is automatically matched to the
corresponding input
parameter:
make_teal_transform_server(expr = expression(x <- subset(x, col == level)))
data_transformators <- list( teal_transform_module( label = "Static transformator for iris", datanames = "iris", server = function(id, data) { moduleServer(id, function(input, output, session) { reactive({ within(data(), { iris <- head(iris, 5) }) }) }) } ), teal_transform_module( label = "Interactive transformator for iris", datanames = "iris", ui = function(id) { ns <- NS(id) tags$div( numericInput(ns("n_cols"), "Show n columns", value = 5, min = 1, max = 5, step = 1) ) }, server = function(id, data) { moduleServer(id, function(input, output, session) { reactive({ within(data(), { iris <- iris[, 1:n_cols] }, n_cols = input$n_cols ) }) }) } ) ) output_decorator <- teal_transform_module( server = make_teal_transform_server( expression( object <- rev(object) ) ) ) app <- init( data = teal_data(iris = iris), modules = example_module( transformators = data_transformators, decorators = list(output_decorator) ) ) if (interactive()) { shinyApp(app$ui, app$server) }
data_transformators <- list( teal_transform_module( label = "Static transformator for iris", datanames = "iris", server = function(id, data) { moduleServer(id, function(input, output, session) { reactive({ within(data(), { iris <- head(iris, 5) }) }) }) } ), teal_transform_module( label = "Interactive transformator for iris", datanames = "iris", ui = function(id) { ns <- NS(id) tags$div( numericInput(ns("n_cols"), "Show n columns", value = 5, min = 1, max = 5, step = 1) ) }, server = function(id, data) { moduleServer(id, function(input, output, session) { reactive({ within(data(), { iris <- iris[, 1:n_cols] }, n_cols = input$n_cols ) }) }) } ) ) output_decorator <- teal_transform_module( server = make_teal_transform_server( expression( object <- rev(object) ) ) ) app <- init( data = teal_data(iris = iris), modules = example_module( transformators = data_transformators, decorators = list(output_decorator) ) ) if (interactive()) { shinyApp(app$ui, app$server) }
TealReportCard
Child class of teal.reporter::ReportCard
that is used for teal
specific applications.
In addition to the parent methods, it supports rendering teal
specific elements such as
the source code, the encodings panel content and the filter panel content as part of the
meta data.
teal.reporter::ReportCard
-> TealReportCard
teal.reporter::ReportCard$append_content()
teal.reporter::ReportCard$append_html()
teal.reporter::ReportCard$append_metadata()
teal.reporter::ReportCard$append_plot()
teal.reporter::ReportCard$append_rcode()
teal.reporter::ReportCard$append_table()
teal.reporter::ReportCard$append_text()
teal.reporter::ReportCard$from_list()
teal.reporter::ReportCard$get_content()
teal.reporter::ReportCard$get_metadata()
teal.reporter::ReportCard$get_name()
teal.reporter::ReportCard$initialize()
teal.reporter::ReportCard$reset()
teal.reporter::ReportCard$set_name()
teal.reporter::ReportCard$to_list()
append_src()
Appends the source code to the content
meta data of this TealReportCard
.
TealReportCard$append_src(src, ...)
src
(character(1)
) code as text.
...
any rmarkdown
R
chunk parameter and its value.
But eval
parameter is always set to FALSE
.
Object of class TealReportCard
, invisibly.
card <- TealReportCard$new()$append_src( "plot(iris)" ) card$get_content()[[1]]$get_content()
append_fs()
Appends the filter state list to the content
and metadata
of this TealReportCard
.
If the filter state list has an attribute named formatted
, it appends it to the card otherwise it uses
the default yaml::as.yaml
to format the list.
If the filter state list is empty, nothing is appended to the content
.
TealReportCard$append_fs(fs)
fs
(teal_slices
) object returned from teal_slices()
function.
self
, invisibly.
append_encodings()
Appends the encodings list to the content
and metadata
of this TealReportCard
.
TealReportCard$append_encodings(encodings)
encodings
(list
) list of encodings selections of the teal
app.
self
, invisibly.
card <- TealReportCard$new()$append_encodings(list(variable1 = "X")) card$get_content()[[1]]$get_content()
clone()
The objects of this class are cloneable with this method.
TealReportCard$clone(deep = FALSE)
deep
Whether to make a deep clone.
## ------------------------------------------------ ## Method `TealReportCard$append_src` ## ------------------------------------------------ card <- TealReportCard$new()$append_src( "plot(iris)" ) card$get_content()[[1]]$get_content() ## ------------------------------------------------ ## Method `TealReportCard$append_encodings` ## ------------------------------------------------ card <- TealReportCard$new()$append_encodings(list(variable1 = "X")) card$get_content()[[1]]$get_content()
## ------------------------------------------------ ## Method `TealReportCard$append_src` ## ------------------------------------------------ card <- TealReportCard$new()$append_src( "plot(iris)" ) card$get_content()[[1]]$get_content() ## ------------------------------------------------ ## Method `TealReportCard$append_encodings` ## ------------------------------------------------ card <- TealReportCard$new()$append_encodings(list(variable1 = "X")) card$get_content()[[1]]$get_content()
validate_has_data( x, min_nrow = NULL, complete = FALSE, allow_inf = TRUE, msg = NULL )
validate_has_data( x, min_nrow = NULL, complete = FALSE, allow_inf = TRUE, msg = NULL )
x |
( |
min_nrow |
( |
complete |
( |
allow_inf |
( |
msg |
( |
This function is a wrapper for shiny::validate
.
library(teal) ui <- fluidPage( sliderInput("len", "Max Length of Sepal", min = 4.3, max = 7.9, value = 5 ), plotOutput("plot") ) server <- function(input, output) { output$plot <- renderPlot({ iris_df <- iris[iris$Sepal.Length <= input$len, ] validate_has_data( iris_df, min_nrow = 10, complete = FALSE, msg = "Please adjust Max Length of Sepal" ) hist(iris_df$Sepal.Length, breaks = 5) }) } if (interactive()) { shinyApp(ui, server) }
library(teal) ui <- fluidPage( sliderInput("len", "Max Length of Sepal", min = 4.3, max = 7.9, value = 5 ), plotOutput("plot") ) server <- function(input, output) { output$plot <- renderPlot({ iris_df <- iris[iris$Sepal.Length <= input$len, ] validate_has_data( iris_df, min_nrow = 10, complete = FALSE, msg = "Please adjust Max Length of Sepal" ) hist(iris_df$Sepal.Length, breaks = 5) }) } if (interactive()) { shinyApp(ui, server) }
validate_has_elements(x, msg)
validate_has_elements(x, msg)
x |
vector |
msg |
message to display |
This function is a wrapper for shiny::validate
.
data <- data.frame( id = c(1:10, 11:20, 1:10), strata = rep(c("A", "B"), each = 15) ) ui <- fluidPage( selectInput("ref1", "Select strata1 to compare", choices = c("A", "B", "C"), selected = "A" ), selectInput("ref2", "Select strata2 to compare", choices = c("A", "B", "C"), selected = "B" ), verbatimTextOutput("arm_summary") ) server <- function(input, output) { output$arm_summary <- renderText({ sample_1 <- data$id[data$strata == input$ref1] sample_2 <- data$id[data$strata == input$ref2] validate_has_elements(sample_1, "No subjects in strata1.") validate_has_elements(sample_2, "No subjects in strata2.") paste0( "Number of samples in: strata1=", length(sample_1), " comparions strata2=", length(sample_2) ) }) } if (interactive()) { shinyApp(ui, server) }
data <- data.frame( id = c(1:10, 11:20, 1:10), strata = rep(c("A", "B"), each = 15) ) ui <- fluidPage( selectInput("ref1", "Select strata1 to compare", choices = c("A", "B", "C"), selected = "A" ), selectInput("ref2", "Select strata2 to compare", choices = c("A", "B", "C"), selected = "B" ), verbatimTextOutput("arm_summary") ) server <- function(input, output) { output$arm_summary <- renderText({ sample_1 <- data$id[data$strata == input$ref1] sample_2 <- data$id[data$strata == input$ref2] validate_has_elements(sample_1, "No subjects in strata1.") validate_has_elements(sample_2, "No subjects in strata2.") paste0( "Number of samples in: strata1=", length(sample_1), " comparions strata2=", length(sample_2) ) }) } if (interactive()) { shinyApp(ui, server) }
validate_has_variable(data, varname, msg)
validate_has_variable(data, varname, msg)
data |
( |
varname |
( |
msg |
( |
This function is a wrapper for shiny::validate
.
data <- data.frame( one = rep("a", length.out = 20), two = rep(c("a", "b"), length.out = 20) ) ui <- fluidPage( selectInput( "var", "Select variable", choices = c("one", "two", "three", "four"), selected = "one" ), verbatimTextOutput("summary") ) server <- function(input, output) { output$summary <- renderText({ validate_has_variable(data, input$var) paste0("Selected treatment variables: ", paste(input$var, collapse = ", ")) }) } if (interactive()) { shinyApp(ui, server) }
data <- data.frame( one = rep("a", length.out = 20), two = rep(c("a", "b"), length.out = 20) ) ui <- fluidPage( selectInput( "var", "Select variable", choices = c("one", "two", "three", "four"), selected = "one" ), verbatimTextOutput("summary") ) server <- function(input, output) { output$summary <- renderText({ validate_has_variable(data, input$var) paste0("Selected treatment variables: ", paste(input$var, collapse = ", ")) }) } if (interactive()) { shinyApp(ui, server) }
validate_in(x, choices, msg)
validate_in(x, choices, msg)
x |
Vector of values to test. |
choices |
Vector to test against. |
msg |
( |
This function is a wrapper for shiny::validate
.
ui <- fluidPage( selectInput( "species", "Select species", choices = c("setosa", "versicolor", "virginica", "unknown species"), selected = "setosa", multiple = FALSE ), verbatimTextOutput("summary") ) server <- function(input, output) { output$summary <- renderPrint({ validate_in(input$species, iris$Species, "Species does not exist.") nrow(iris[iris$Species == input$species, ]) }) } if (interactive()) { shinyApp(ui, server) }
ui <- fluidPage( selectInput( "species", "Select species", choices = c("setosa", "versicolor", "virginica", "unknown species"), selected = "setosa", multiple = FALSE ), verbatimTextOutput("summary") ) server <- function(input, output) { output$summary <- renderPrint({ validate_in(input$species, iris$Species, "Species does not exist.") nrow(iris[iris$Species == input$species, ]) }) } if (interactive()) { shinyApp(ui, server) }
Captures messages from InputValidator
objects and collates them
into one message passed to validate
.
validate_inputs(..., header = "Some inputs require attention")
validate_inputs(..., header = "Some inputs require attention")
... |
either any number of |
header |
( |
shiny::validate
is used to withhold rendering of an output element until
certain conditions are met and to print a validation message in place
of the output element.
shinyvalidate::InputValidator
allows to validate input elements
and to display specific messages in their respective input widgets.
validate_inputs
provides a hybrid solution.
Given an InputValidator
object, messages corresponding to inputs that fail validation
are extracted and placed in one validation message that is passed to a validate
/need
call.
This way the input validator
messages are repeated in the output.
The ...
argument accepts any number of InputValidator
objects
or a nested list of such objects.
If validators
are passed directly, all their messages are printed together
under one (optional) header message specified by header
. If a list is passed,
messages are grouped by validator
. The list's names are used as headers
for their respective message groups.
If neither of the nested list elements is named, a header message is taken from header
.
Returns NULL if the final validation call passes and a shiny.silent.error
if it fails.
shinyvalidate::InputValidator
, shiny::validate
library(shiny) library(shinyvalidate) ui <- fluidPage( selectInput("method", "validation method", c("sequential", "combined", "grouped")), sidebarLayout( sidebarPanel( selectInput("letter", "select a letter:", c(letters[1:3], LETTERS[4:6])), selectInput("number", "select a number:", 1:6), tags$br(), selectInput("color", "select a color:", c("black", "indianred2", "springgreen2", "cornflowerblue"), multiple = TRUE ), sliderInput("size", "select point size:", min = 0.1, max = 4, value = 0.25 ) ), mainPanel(plotOutput("plot")) ) ) server <- function(input, output) { # set up input validation iv <- InputValidator$new() iv$add_rule("letter", sv_in_set(LETTERS, "choose a capital letter")) iv$add_rule("number", function(x) { if (as.integer(x) %% 2L == 1L) "choose an even number" }) iv$enable() # more input validation iv_par <- InputValidator$new() iv_par$add_rule("color", sv_required(message = "choose a color")) iv_par$add_rule("color", function(x) { if (length(x) > 1L) "choose only one color" }) iv_par$add_rule( "size", sv_between( left = 0.5, right = 3, message_fmt = "choose a value between {left} and {right}" ) ) iv_par$enable() output$plot <- renderPlot({ # validate output switch(input[["method"]], "sequential" = { validate_inputs(iv) validate_inputs(iv_par, header = "Set proper graphical parameters") }, "combined" = validate_inputs(iv, iv_par), "grouped" = validate_inputs(list( "Some inputs require attention" = iv, "Set proper graphical parameters" = iv_par )) ) plot(faithful$eruptions ~ faithful$waiting, las = 1, pch = 16, col = input[["color"]], cex = input[["size"]] ) }) } if (interactive()) { shinyApp(ui, server) }
library(shiny) library(shinyvalidate) ui <- fluidPage( selectInput("method", "validation method", c("sequential", "combined", "grouped")), sidebarLayout( sidebarPanel( selectInput("letter", "select a letter:", c(letters[1:3], LETTERS[4:6])), selectInput("number", "select a number:", 1:6), tags$br(), selectInput("color", "select a color:", c("black", "indianred2", "springgreen2", "cornflowerblue"), multiple = TRUE ), sliderInput("size", "select point size:", min = 0.1, max = 4, value = 0.25 ) ), mainPanel(plotOutput("plot")) ) ) server <- function(input, output) { # set up input validation iv <- InputValidator$new() iv$add_rule("letter", sv_in_set(LETTERS, "choose a capital letter")) iv$add_rule("number", function(x) { if (as.integer(x) %% 2L == 1L) "choose an even number" }) iv$enable() # more input validation iv_par <- InputValidator$new() iv_par$add_rule("color", sv_required(message = "choose a color")) iv_par$add_rule("color", function(x) { if (length(x) > 1L) "choose only one color" }) iv_par$add_rule( "size", sv_between( left = 0.5, right = 3, message_fmt = "choose a value between {left} and {right}" ) ) iv_par$enable() output$plot <- renderPlot({ # validate output switch(input[["method"]], "sequential" = { validate_inputs(iv) validate_inputs(iv_par, header = "Set proper graphical parameters") }, "combined" = validate_inputs(iv, iv_par), "grouped" = validate_inputs(list( "Some inputs require attention" = iv, "Set proper graphical parameters" = iv_par )) ) plot(faithful$eruptions ~ faithful$waiting, las = 1, pch = 16, col = input[["color"]], cex = input[["size"]] ) }) } if (interactive()) { shinyApp(ui, server) }
validate_n_levels(x, min_levels = 1, max_levels = 12, var_name)
validate_n_levels(x, min_levels = 1, max_levels = 12, var_name)
x |
variable name. If |
min_levels |
cutoff for minimum number of levels of |
max_levels |
cutoff for maximum number of levels of |
var_name |
name of variable being validated for use in validation message |
If the number of levels of x
is less than min_levels
or greater than max_levels
the validation will fail.
This function is a wrapper for shiny::validate
.
data <- data.frame( one = rep("a", length.out = 20), two = rep(c("a", "b"), length.out = 20), three = rep(c("a", "b", "c"), length.out = 20), four = rep(c("a", "b", "c", "d"), length.out = 20), stringsAsFactors = TRUE ) ui <- fluidPage( selectInput( "var", "Select variable", choices = c("one", "two", "three", "four"), selected = "one" ), verbatimTextOutput("summary") ) server <- function(input, output) { output$summary <- renderText({ validate_n_levels(data[[input$var]], min_levels = 2, max_levels = 15, var_name = input$var) paste0( "Levels of selected treatment variable: ", paste(levels(data[[input$var]]), collapse = ", " ) ) }) } if (interactive()) { shinyApp(ui, server) }
data <- data.frame( one = rep("a", length.out = 20), two = rep(c("a", "b"), length.out = 20), three = rep(c("a", "b", "c"), length.out = 20), four = rep(c("a", "b", "c", "d"), length.out = 20), stringsAsFactors = TRUE ) ui <- fluidPage( selectInput( "var", "Select variable", choices = c("one", "two", "three", "four"), selected = "one" ), verbatimTextOutput("summary") ) server <- function(input, output) { output$summary <- renderText({ validate_n_levels(data[[input$var]], min_levels = 2, max_levels = 15, var_name = input$var) paste0( "Levels of selected treatment variable: ", paste(levels(data[[input$var]]), collapse = ", " ) ) }) } if (interactive()) { shinyApp(ui, server) }
validate_no_intersection(x, y, msg)
validate_no_intersection(x, y, msg)
x |
vector |
y |
vector |
msg |
( |
This function is a wrapper for shiny::validate
.
data <- data.frame( id = c(1:10, 11:20, 1:10), strata = rep(c("A", "B", "C"), each = 10) ) ui <- fluidPage( selectInput("ref1", "Select strata1 to compare", choices = c("A", "B", "C"), selected = "A" ), selectInput("ref2", "Select strata2 to compare", choices = c("A", "B", "C"), selected = "B" ), verbatimTextOutput("summary") ) server <- function(input, output) { output$summary <- renderText({ sample_1 <- data$id[data$strata == input$ref1] sample_2 <- data$id[data$strata == input$ref2] validate_no_intersection( sample_1, sample_2, "subjects within strata1 and strata2 cannot overlap" ) paste0( "Number of subject in: reference treatment=", length(sample_1), " comparions treatment=", length(sample_2) ) }) } if (interactive()) { shinyApp(ui, server) }
data <- data.frame( id = c(1:10, 11:20, 1:10), strata = rep(c("A", "B", "C"), each = 10) ) ui <- fluidPage( selectInput("ref1", "Select strata1 to compare", choices = c("A", "B", "C"), selected = "A" ), selectInput("ref2", "Select strata2 to compare", choices = c("A", "B", "C"), selected = "B" ), verbatimTextOutput("summary") ) server <- function(input, output) { output$summary <- renderText({ sample_1 <- data$id[data$strata == input$ref1] sample_2 <- data$id[data$strata == input$ref2] validate_no_intersection( sample_1, sample_2, "subjects within strata1 and strata2 cannot overlap" ) paste0( "Number of subject in: reference treatment=", length(sample_1), " comparions treatment=", length(sample_2) ) }) } if (interactive()) { shinyApp(ui, server) }
validate_one_row_per_id(x, key = c("USUBJID", "STUDYID"))
validate_one_row_per_id(x, key = c("USUBJID", "STUDYID"))
x |
( |
key |
( |
This function is a wrapper for shiny::validate
.
iris$id <- rep(1:50, times = 3) ui <- fluidPage( selectInput( inputId = "species", label = "Select species", choices = c("setosa", "versicolor", "virginica"), selected = "setosa", multiple = TRUE ), plotOutput("plot") ) server <- function(input, output) { output$plot <- renderPlot({ iris_f <- iris[iris$Species %in% input$species, ] validate_one_row_per_id(iris_f, key = c("id")) hist(iris_f$Sepal.Length, breaks = 5) }) } if (interactive()) { shinyApp(ui, server) }
iris$id <- rep(1:50, times = 3) ui <- fluidPage( selectInput( inputId = "species", label = "Select species", choices = c("setosa", "versicolor", "virginica"), selected = "setosa", multiple = TRUE ), plotOutput("plot") ) server <- function(input, output) { output$plot <- renderPlot({ iris_f <- iris[iris$Species %in% input$species, ] validate_one_row_per_id(iris_f, key = c("id")) hist(iris_f$Sepal.Length, breaks = 5) }) } if (interactive()) { shinyApp(ui, server) }