teal
is a powerful shiny
-based framework
with built-in modules for interactive data analysis. This document
outlines the customization options available for modifying the output of
teal
modules. You will learn how to use
teal_transform_module()
to modify and enhance the objects
created by teal::modules()
, enabling you to tailor the
outputs to your specific requirements without rewriting the original
module code.
In programming, decoration refers to the process of
modifying an object while preserving its original class. For instance,
given an object x
of class "my_class"
, a
function foo(x)
is considered a decorator
function if it modifies x
and returns an object
that retains the same class. In this context, x
is referred
to as the decorated object, and foo()
is
the decorator function or decorator.
Decorators can perform a variety of operations, such as adding new
methods or modifying data, while ensuring the object remains compatible
with its original usage.
In the context of teal
applications, decoration is
specifically used to modify module outputs, such as plots or tables. For
example, consider a decorator function
add_title(x, <plot_title>)
that takes a
ggplot2
plot object (x
) as input, applies a
title modification, and returns a modified ggplot2
plot
object. This function qualifies as a decorator because it preserves the
original class of the input object. Conversely, a function like
create_plot(<data>, <x_axis>, <y_axis>)
,
which generates a new plot object, is not a decorator,
as it produces an output of a different class.
Preserving the object’s class during decoration is essential for compatibility. It ensures that the subsequent “display” logic can seamlessly handle both decorated and non-decorated objects.
The decoration process can vary in complexity:
shiny
UI elements.This powerful functionality empowers application developers to
significantly customize outputs beyond the default capabilities provided
by existing module parameters. Decorations allow for advanced
modifications, enabling highly tailored and dynamic user experiences in
teal
applications.
To use decorators effectively, certain requirements must be met:
teal
provides
the core functionality for decorators, the module must explicitly
support this functionality. Developers should ensure that the module has
been designed to work with decorators.plot
or table
. This alignment is critical
for successful decoration.It is recommended to review the module documentation or source code to understand its internal object naming before applying decorators.
teal
One of ways of adjusting input data or customizing module outputs in
teal
is the usage of transformators
created
through teal_transform_module
.
In below chapter we will present how to create the simplest static
decorator with just a server part. Later, we will present examples on
more advanced usage, where decorators contain UI. You will also learn
about a convenience function that makes it easier to write decorators,
called make_teal_transform_server()
. The chapter ends with
an example module that utilizes decorators and a snippet that uses this
module in teal
application.
The simplest way to create a decorator is to use
teal_transform_module()
with only server
argument provided (i.e. without UI part). This approach adds
functionality solely to the server code of the module. In the following
example, we assume that the module contains an object (of class
ggplot2
) named plot
. We modify the title and
x-axis label of plot:
library(teal)
static_decorator <- teal_transform_module(
label = "Static decorator",
server = function(id, data) {
moduleServer(id, function(input, output, session) {
reactive({
req(data())
within(data(), {
plot <- plot +
ggtitle("This is title") +
xlab("x axis")
})
})
})
}
)
To simplify the repetitive elements of writing new decorators (e.g.,
function(id, data), moduleServer, reactive, within(data, ...)
),
you can use the make_teal_transform_server()
convenience
function, which takes a language
as input:
To create a decorator with user interactivity, you can add (optional)
UI part and use it in server accordingly (i.e. a typical
shiny
module). In the example below, the x-axis title is
set dynamically via a textInput
, allowing users to specify
their preferred label. Note how the input parameters are passed to the
within()
function using its ...
argument.
interactive_decorator <- teal_transform_module(
label = "Interactive decorator",
ui = function(id) {
ns <- NS(id)
div(
textInput(ns("x_axis_title"), "X axis title", value = "x axis")
)
},
server = function(id, data) {
moduleServer(id, function(input, output, session) {
reactive({
req(data())
within(data(),
{
plot <- plot +
ggtitle("This is title") +
xlab(my_title)
},
my_title = input$x_axis_title
)
})
})
}
)
As in the earlier examples, make_teal_transform_server()
can simplify the creation of the server component. This wrapper requires
you to use input
object names directly in the expression -
note that we have xlab(x_axis_table)
and not
my_title = input$x_axis_title
together with
xlab(my_title)
.
interactive_decorator_lang <- teal_transform_module(
label = "Interactive decorator (language)",
ui = function(id) {
ns <- NS(id)
div(
textInput(ns("x_axis_title"), "X axis title", value = "x axis")
)
},
server = make_teal_transform_server(
expression(
plot <- plot +
ggtitle("This is title") +
xlab(x_axis_title)
)
)
)
teal_transform_module
relies on the names of objects
created within a module. Writing a decorator that applies to any module
can be challenging because different modules may use different object
names. It is recommended to create a library of decorator functions that
can be adapted to the specific object names used in teal
modules. In the following example, focus on the output_name
parameter to see how decorator can be applied to multiple modules:
gg_xlab_decorator <- function(output_name) {
teal_transform_module(
label = "X-axis decorator",
ui = function(id) {
ns <- NS(id)
div(
textInput(ns("x_axis_title"), "X axis title", value = "x axis")
)
},
server = function(id, data) {
moduleServer(id, function(input, output, session) {
reactive({
req(data())
within(data(),
{
output_name <- output_name +
xlab(x_axis_title)
},
x_axis_title = input$x_axis_title,
output_name = as.name(output_name)
)
})
})
}
)
}
Decorator failures are managed by an internal teal
mechanism called trigger on success, which ensures that
the data
object within the module remains intact. If a
decorator fails, the outputs will not be shown, and an appropriate error
message will be displayed.
failing_decorator <- teal_transform_module(
label = "Failing decorator",
ui = function(id) {
ns <- NS(id)
div(
textInput(ns("x_axis_title"), "X axis title", value = "x axis")
)
},
server = function(id, data) {
moduleServer(id, function(input, output, session) {
reactive(stop("\nThis is an error produced by decorator\n"))
})
}
)
To include decorators in a teal
module, pass them as
arguments (ui_args
and server_args
) to the
module’s ui
and server
components, where they
will be used by ui/srv_teal_transform_module
.
Please find an example module for the sake of this article:
tm_decorated_plot <- function(label = "module", transformators = list(), decorators = NULL) {
checkmate::assert_list(decorators, "teal_transform_module", null.ok = TRUE)
module(
label = label,
ui = function(id, decorators) {
ns <- NS(id)
div(
selectInput(ns("dataname"), label = "select dataname", choices = NULL),
selectInput(ns("x"), label = "select x", choices = NULL),
selectInput(ns("y"), label = "select y", choices = NULL),
ui_transform_teal_data(ns("decorate"), transformators = decorators),
plotOutput(ns("plot")),
verbatimTextOutput(ns("text"))
)
},
server = function(id, data, decorators) {
moduleServer(id, function(input, output, session) {
observeEvent(data(), {
updateSelectInput(inputId = "dataname", choices = names(data()))
})
observeEvent(input$dataname, {
req(input$dataname)
updateSelectInput(inputId = "x", choices = colnames(data()[[input$dataname]]))
updateSelectInput(inputId = "y", choices = colnames(data()[[input$dataname]]))
})
dataname <- reactive(req(input$dataname))
x <- reactive({
req(input$x, input$x %in% colnames(data()[[dataname()]]))
input$x
})
y <- reactive({
req(input$y, input$y %in% colnames(data()[[dataname()]]))
input$y
})
plot_data <- reactive({
req(dataname(), x(), y())
within(data(),
{
plot <- ggplot2::ggplot(dataname, ggplot2::aes(x = x, y = y)) +
ggplot2::geom_point()
},
dataname = as.name(dataname()),
x = as.name(x()),
y = as.name(y())
)
})
plot_data_decorated_no_print <- srv_transform_teal_data(
"decorate",
data = plot_data,
transformators = decorators
)
plot_data_decorated <- reactive(
within(req(plot_data_decorated_no_print()), expr = plot)
)
plot_r <- reactive({
plot_data_decorated()[["plot"]]
})
output$plot <- renderPlot(plot_r())
output$text <- renderText({
teal.code::get_code(req(plot_data_decorated()))
})
})
},
ui_args = list(decorators = decorators),
server_args = list(decorators = decorators)
)
}
library(ggplot2)
app <- init(
data = teal_data(iris = iris, mtcars = mtcars),
modules = modules(
tm_decorated_plot("identity"),
tm_decorated_plot("no-ui", decorators = list(static_decorator)),
tm_decorated_plot("lang", decorators = list(static_decorator_lang)),
tm_decorated_plot("interactive", decorators = list(interactive_decorator)),
tm_decorated_plot("interactive-from lang", decorators = list(interactive_decorator_lang)),
tm_decorated_plot("from-fun", decorators = list(gg_xlab_decorator("plot"))),
tm_decorated_plot("failing", decorators = list(failing_decorator))
)
)
if (interactive()) {
shinyApp(app$ui, app$server)
}
It is possible to pass any number of decorators (n) to a module. The example below demonstrates how to handle a dynamic number of decorators, allowing the user to choose which decorator to apply from a list. This makes the module more flexible and capable of accommodating various customization requirements.
library(ggplot2)
tm_decorated_plot <- function(label = "module", decorators = NULL) {
checkmate::assert_list(decorators, "teal_transform_module", null.ok = TRUE)
module(
label = label,
ui = function(id, decorators) {
ns <- NS(id)
div(
selectInput(ns("dataname"), label = "Select dataset", choices = NULL),
selectInput(ns("x"), label = "Select x-axis", choices = NULL),
selectInput(ns("y"), label = "Select y-axis", choices = NULL),
selectInput(
ns("decorator_choice"),
"Choose decorator",
choices = names(decorators),
selected = names(decorators)[1]
),
div(
id = ns("decorate_wrapper"),
lapply(names(decorators), function(decorator_name) {
div(
id = ns(paste0("decorate_", decorator_name)),
ui_transform_teal_data(
ns(paste0("decorate_", decorator_name)),
transformators = decorators[[decorator_name]]
)
)
})
),
plotOutput(ns("plot")),
verbatimTextOutput(ns("text"))
)
},
server = function(id, data, decorators) {
moduleServer(id, function(input, output, session) {
observeEvent(data(), {
updateSelectInput(inputId = "dataname", choices = names(data()))
})
dataname <- reactive(req(input$dataname))
observeEvent(dataname(), {
updateSelectInput(inputId = "x", choices = colnames(data()[[input$dataname]]))
updateSelectInput(inputId = "y", choices = colnames(data()[[input$dataname]]))
})
observeEvent(input$decorator_choice, {
# Dynamically show only the selected decorator's UI
lapply(names(decorators), function(decorator_name) {
if (decorator_name == input$decorator_choice) {
shinyjs::show(paste0("decorate_", decorator_name))
} else {
shinyjs::hide(paste0("decorate_", decorator_name))
}
})
})
x <- reactive({
req(input$x, input$x %in% colnames(data()[[dataname()]]))
input$x
})
y <- reactive({
req(input$y, input$y %in% colnames(data()[[dataname()]]))
input$y
})
plot_data <- reactive({
req(dataname(), x(), y())
within(data(),
{
plot <- ggplot2::ggplot(dataname, ggplot2::aes(x = x, y = y)) +
ggplot2::geom_point()
},
dataname = as.name(dataname()),
x = as.name(x()),
y = as.name(y())
)
})
selected_decorator <- reactive({
req(input$decorator_choice)
input$decorator_choice
})
decorated_data_no_print <- srv_transform_teal_data(
sprintf("decorate_%s", selected_decorator()),
data = plot_data,
transformators = decorators[[selected_decorator()]]
)
decorated_data <- reactive(within(req(decorated_data_no_print()), expr = plot))
output$plot <- renderPlot(decorated_data()[["plot"]])
output$text <- renderText({
req(input$decorator_choice)
teal.code::get_code(req(decorated_data()))
})
})
},
ui_args = list(decorators = decorators),
server_args = list(decorators = decorators)
)
}
By order of the decorator we will:
interactive_decorator_1 <- teal_transform_module(
label = "Interactive decorator 1",
ui = function(id) {
ns <- NS(id)
div(
textInput(ns("x_axis_title"), "X axis title", value = "x axis 1")
)
},
server = function(id, data) {
moduleServer(id, function(input, output, session) {
reactive({
req(data())
within(data(),
{
plot <- plot +
xlab(title)
},
title = input$x_axis_title
)
})
})
}
)
interactive_decorator_2 <- teal_transform_module(
label = "Interactive decorator 2",
ui = function(id) {
ns <- NS(id)
div(
textInput(ns("y_axis_title"), "Y axis title", value = "y axis 1")
)
},
server = function(id, data) {
moduleServer(id, function(input, output, session) {
reactive({
req(data())
within(data(),
{
plot <- plot +
ylab(title)
},
title = input$y_axis_title
)
})
})
}
)
interactive_decorator_3 <- teal_transform_module(
label = "Interactive decorator 3",
ui = function(id) {
ns <- NS(id)
div(
textInput(ns("x_axis_title"), "X axis title", value = "x axis 3")
)
},
server = function(id, data) {
moduleServer(id, function(input, output, session) {
reactive({
req(data())
within(data(),
{
plot <- plot +
xlab(title)
},
title = input$x_axis_title
)
})
})
}
)
As you might have noted, the x axis title from the first decorator will be used but won’t show up on the resulting plot:
app <- init(
data = teal_data(iris = iris, mtcars = mtcars),
modules = modules(
tm_decorated_plot(
"dynamic_decorators",
decorators = list(
decorator_1 = interactive_decorator_1,
decorator_2 = interactive_decorator_2,
decorator_3 = interactive_decorator_3
)
)
)
)
if (interactive()) {
shinyApp(app$ui, app$server)
}
In this section, we demonstrate how to extend a teal module to handle multiple outputs and allow separate decoration for each. Specifically, the module will have two outputs:
ggplot
plotWe will apply independent decorators to each output.
The following module generates both a scatter plot and a summary table. Each of these outputs can be decorated independently using decorators passed to the module:
tm_decorated_plot_table <- function(label = "module with two outputs", decorators = list()) {
checkmate::assert_list(decorators, "teal_transform_module", null.ok = TRUE)
module(
label = label,
ui = function(id, decorators) {
ns <- NS(id)
div(
selectInput(ns("dataname"), label = "Select dataset", choices = NULL),
selectInput(ns("x"), label = "Select x-axis", choices = NULL),
selectInput(ns("y"), label = "Select y-axis", choices = NULL),
ui_transform_teal_data(ns("decorate_plot"), transformators = decorators$plot),
ui_transform_teal_data(ns("decorate_table"), transformators = decorators$table),
plotOutput(ns("plot")),
tableOutput(ns("table")),
verbatimTextOutput(ns("text"))
)
},
server = function(id, data, decorators) {
moduleServer(id, function(input, output, session) {
observeEvent(data(), {
updateSelectInput(inputId = "dataname", choices = names(data()))
})
dataname <- reactive(req(input$dataname))
observeEvent(dataname(), {
updateSelectInput(inputId = "x", choices = colnames(data()[[input$dataname]]))
updateSelectInput(inputId = "y", choices = colnames(data()[[input$dataname]]))
})
x <- reactive({
req(input$x, input$x %in% colnames(data()[[dataname()]]))
input$x
})
y <- reactive({
req(input$y, input$y %in% colnames(data()[[dataname()]]))
input$y
})
# Generate plot data
plot_data <- reactive({
req(dataname(), x(), y())
within(data(),
{
plot <- ggplot2::ggplot(dataname, ggplot2::aes(x = xvar, y = yvar)) +
ggplot2::geom_point()
},
dataname = as.name(dataname()),
xvar = as.name(x()),
yvar = as.name(y())
)
})
# Generate table data
table_data <- reactive({
req(dataname())
within(data(),
{
table_data <- data.frame(Filter(Negate(is.na), lapply(dataname, mean, na.rm = TRUE)))
},
dataname = as.name(dataname())
)
})
# Apply decorators to plot
decorated_plot <- srv_transform_teal_data(
"decorate_plot",
data = plot_data,
transformators = decorators$plot
)
# Apply decorators to table
decorated_table <- srv_transform_teal_data(
"decorate_table",
data = table_data,
transformators = decorators$table
)
output$plot <- renderPlot(decorated_plot()[["plot"]])
output$table <- renderTable(decorated_table()[["table_data"]])
output$text <- renderText({
plot_code <- teal.code::get_code(req(decorated_plot()))
table_code <- teal.code::get_code(req(decorated_table()))
paste("# Plot Code:", plot_code, "\n\n# Table Code:", table_code)
})
})
},
ui_args = list(decorators = decorators),
server_args = list(decorators = decorators)
)
}
plot_decorator <- teal_transform_module(
label = "Decorate plot",
ui = function(id) {
ns <- NS(id)
textInput(ns("plot_title"), "Plot Title", value = "Decorated Title (editable)")
},
server = function(id, data) {
moduleServer(id, function(input, output, session) {
reactive({
req(data())
within(data(),
{
plot <- plot + ggplot2::ggtitle(ptitle) +
ggplot2::theme_minimal() +
ggplot2::theme(
plot.title = element_text(face = "bold", size = 30, color = "blue")
)
},
ptitle = input$plot_title
)
})
})
}
)