--- title: "Using data table" author: "NEST CoreDev" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Using data table} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- # `teal` application to display data table with various datasets types This vignette will guide you through the four parts to create a `teal` application using various types of datasets using the data table module `tm_data_table()`: 1. Load libraries 2. Create data sets 3. Create an `app` variable 4. Run the app ## 1 - Load libraries ```{r library, echo=TRUE, message=FALSE, warning=FALSE, results="hide"} library(teal.modules.general) # used to create the app ``` ## 2 - Create data sets Inside this app 3 datasets will be used 1. `ADSL` A wide data set with subject data 2. `ADTTE` A long data set with time to event data 3. `ADLB` A long data set with lab measurements for each subject ```{r data, echo=TRUE, message=FALSE, warning=FALSE, results="hide"} data <- teal_data() data <- within(data, { ADSL <- teal.modules.general::rADSL ADTTE <- teal.modules.general::rADTTE ADLB <- teal.modules.general::rADLB }) join_keys(data) <- default_cdisc_join_keys[names(data)] ``` ## 3 - Create an `app` variable This is the most important section. We will use the `teal::init()` function to create an app. The data will be handed over using `teal.data::teal_data()`. The app itself will be constructed by multiple calls of `tm_data_table()` using different combinations of data sets. ```{r app, echo=TRUE, message=FALSE, warning=FALSE, results="hide"} # configuration for the two-datasets example mod1 <- tm_data_table( label = "Two datasets", variables_selected = list( ADSL = c("STUDYID", "USUBJID", "SUBJID", "SITEID", "AGE", "SEX"), ADTTE = c( "STUDYID", "USUBJID", "SUBJID", "SITEID", "PARAM", "PARAMCD", "ARM", "ARMCD", "AVAL", "CNSR" ) ) ) # configuration for the subsetting or changing order of datasets mod2 <- tm_data_table( label = "Datasets order", variables_selected = list( ADSL = c("STUDYID", "USUBJID", "SUBJID", "SITEID", "AGE", "SEX"), ADLB = c( "STUDYID", "USUBJID", "SUBJID", "SITEID", "PARAM", "PARAMCD", "AVISIT", "AVISITN", "AVAL", "CHG" ) ), datasets_selected = c("ADTTE", "ADLB", "ADSL") ) # configuration for the advanced usage of DT options and extensions mod3 <- tm_data_table( label = "Advanced DT usage", dt_args = list(extensions = c("Buttons", "ColReorder", "FixedHeader")), dt_options = list( searching = FALSE, pageLength = 30, lengthMenu = c(5, 15, 25, 50, 100), scrollX = FALSE, dom = "lBrtip", buttons = c("copy", "csv", "excel", "pdf", "print"), colReorder = TRUE, fixedHeader = TRUE ) ) # initialize the app app <- init( data = data, modules = modules( mod1, mod2, mod3 ) ) ``` ## 4 - Run the app A simple `shiny::shinyApp()` call will let you run the app. Note that app is only displayed when running this code inside an `R` session. ```{r shinyapp, echo=TRUE, results="hide", eval=base::interactive()} shinyApp(app$ui, app$server, options = list(height = 1024, width = 1024)) ``` ## 5 - Try it out in Shinylive ```{r shinylive_url, echo = FALSE, results = 'asis', eval = requireNamespace("roxy.shinylive", quietly = TRUE)} code <- paste0(c( knitr::knit_code$get("library"), knitr::knit_code$get("data"), knitr::knit_code$get("app"), knitr::knit_code$get("shinyapp") ), collapse = "\n") url <- roxy.shinylive::create_shinylive_url(code) cat(sprintf("[Open in Shinylive](%s)\n\n", url)) ``` ```{r shinylive_iframe, echo = FALSE, out.width = '150%', out.extra = 'style = "position: relative; z-index:1"', eval = requireNamespace("roxy.shinylive", quietly = TRUE) && knitr::is_html_output() && identical(Sys.getenv("IN_PKGDOWN"), "true")} knitr::include_url(url, height = "800px") ```