--- title: "Using bivariate plot" author: "NEST CoreDev" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Using bivariate plot} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- # `teal` application to use bivariate plot with various datasets types This vignette will guide you through the four parts to create a `teal` application using various types of datasets using the bivariate plot module `tm_g_bivariate()`: 1. Load libraries 2. Create data sets 3. Create an `app` variable 4. Run the app ## 1 - Load libraries ```{r library, echo=TRUE, message=FALSE, warning=FALSE, results="hide"} library(teal.modules.general) # used to create the app library(dplyr) # used to modify data sets ``` ## 2 - Create data sets Inside this app 4 datasets will be used 1. `ADSL` A wide data set with subject data 2. `ADRS` A long data set with response data for subjects at different time points of the study 3. `ADTTE` A long data set with time to event data 4. `ADLB` A long data set with lab measurements for each subject ```{r data, echo=TRUE, message=FALSE, warning=FALSE, results="hide"} data <- teal_data() data <- within(data, { ADSL <- teal.modules.general::rADSL %>% mutate(TRTDUR = round(as.numeric(TRTEDTM - TRTSDTM), 1)) ADRS <- teal.modules.general::rADRS ADTTE <- teal.modules.general::rADTTE ADLB <- teal.modules.general::rADLB %>% mutate(CHGC = as.factor(case_when( CHG < 1 ~ "N", CHG > 1 ~ "P", TRUE ~ "-" ))) }) join_keys(data) <- default_cdisc_join_keys[names(data)] ``` ## 3 - Create an `app` variable This is the most important section. We will use the `teal::init()` function to create an app. The data will be handed over using `teal.data::teal_data()`. The app itself will be constructed by multiple calls of `tm_g_bivariate()` using different combinations of data sets. ```{r app, echo=TRUE, message=FALSE, warning=FALSE, results="hide"} # configuration for the single wide dataset mod1 <- tm_g_bivariate( label = "Single wide dataset", x = data_extract_spec( dataname = "ADSL", select = select_spec( label = "Select variable:", choices = variable_choices(data[["ADSL"]]), selected = "BMRKR1", fixed = FALSE ) ), y = data_extract_spec( dataname = "ADSL", select = select_spec( label = "Select variable:", choices = variable_choices(data[["ADSL"]]), selected = "SEX", multiple = FALSE, fixed = FALSE ) ), row_facet = data_extract_spec( dataname = "ADSL", select = select_spec( label = "Select variables:", choices = variable_choices(data[["ADSL"]]), selected = NULL, multiple = FALSE, fixed = FALSE ) ), col_facet = data_extract_spec( dataname = "ADSL", select = select_spec( label = "Select variables:", choices = variable_choices(data[["ADSL"]]), selected = NULL, multiple = FALSE, fixed = FALSE ) ) ) # configuration for the two wide datasets mod2 <- tm_g_bivariate( label = "Two wide datasets", x = data_extract_spec( dataname = "ADSL", select = select_spec( label = "Select variable:", choices = variable_choices(data[["ADSL"]], c("BMRKR1", "AGE", "SEX", "STRATA1", "RACE")), selected = c("BMRKR1"), multiple = FALSE ) ), y = data_extract_spec( dataname = "ADSL", select = select_spec( label = "Select variables:", choices = variable_choices(data[["ADSL"]], c("COUNTRY", "AGE", "RACE")), selected = "RACE", multiple = FALSE ) ), row_facet = data_extract_spec( dataname = "ADSL", select = select_spec( label = "Select variable:", choices = variable_choices(data[["ADSL"]]), selected = NULL, multiple = FALSE, fixed = FALSE ) ), col_facet = data_extract_spec( dataname = "ADSL", select = select_spec( label = "Select variables:", choices = variable_choices(data[["ADSL"]]), selected = NULL, multiple = FALSE, fixed = FALSE ) ) ) # configuration for the multiple different long datasets mod3 <- tm_g_bivariate( label = "Multiple different long datasets", x = data_extract_spec( dataname = "ADRS", filter = filter_spec( label = "Select endpoints:", vars = c("PARAMCD", "AVISIT"), choices = value_choices(data[["ADRS"]], c("PARAMCD", "AVISIT"), c("PARAM", "AVISIT")), selected = "OVRINV - END OF INDUCTION", multiple = TRUE ), select = select_spec( choices = variable_choices(data[["ADRS"]], c("AVALC", "AVAL")), selected = "AVALC", multiple = FALSE ) ), y = data_extract_spec( dataname = "ADTTE", select = select_spec( label = "Select variable:", choices = variable_choices(data[["ADTTE"]], c("AVAL", "CNSR")), selected = "AVAL", multiple = FALSE, fixed = FALSE ), filter = filter_spec( label = "Select endpoint:", vars = c("PARAMCD"), choices = value_choices(data[["ADTTE"]], "PARAMCD", "PARAM"), selected = "OS", multiple = FALSE ) ), row_facet = data_extract_spec( dataname = "ADRS", filter = filter_spec( label = "Select endpoints:", vars = c("PARAMCD", "AVISIT"), choices = value_choices(data[["ADRS"]], c("PARAMCD", "AVISIT"), c("PARAM", "AVISIT")), selected = "OVRINV - SCREENING", multiple = TRUE ), select = select_spec( label = "Select variable:", choices = variable_choices(data[["ADRS"]], c("SEX", "RACE", "COUNTRY", "ARM", "PARAMCD", "AVISIT")), selected = "SEX", multiple = FALSE, fixed = FALSE ) ), col_facet = data_extract_spec( dataname = "ADSL", select = select_spec( label = "Select variables:", choices = variable_choices(data[["ADSL"]], c("SEX", "RACE")), selected = NULL, multiple = FALSE, fixed = FALSE ) ), color_settings = TRUE, color = data_extract_spec( dataname = "ADSL", select = select_spec( choices = variable_choices(data[["ADSL"]], c("SEX", "RACE", "COUNTRY")), selected = NULL, multiple = FALSE, fixed = FALSE, label = "Select variable:" ) ), fill = data_extract_spec( dataname = "ADSL", select = select_spec( choices = variable_choices(data[["ADSL"]], c("SEX", "RACE", "COUNTRY")), selected = NULL, multiple = FALSE, fixed = FALSE, label = "Select variable:" ) ), size = data_extract_spec( dataname = "ADSL", select = select_spec( choices = variable_choices(data[["ADSL"]], c("AGE", "BMRKR1")), selected = NULL, multiple = FALSE, fixed = FALSE, label = "Select variable:" ) ), plot_height = c(600, 200, 2000), ggtheme = "gray" ) # configuration for the wide and long datasets mod4 <- tm_g_bivariate( label = "Wide and long datasets", x = data_extract_spec( dataname = "ADRS", filter = list( filter_spec( vars = "PARAMCD", choices = value_choices(data[["ADRS"]], "PARAMCD", "PARAM"), selected = levels(data[["ADRS"]]$PARAMCD)[1], multiple = FALSE, label = "Select response:" ), filter_spec( vars = "AVISIT", choices = levels(data[["ADRS"]]$AVISIT), selected = levels(data[["ADRS"]]$AVISIT)[1], multiple = FALSE, label = "Select visit:" ) ), select = select_spec( choices = variable_choices(data[["ADRS"]], c("AVALC", "AVAL")), selected = "AVALC", multiple = FALSE, label = "Select variable:" ) ), y = data_extract_spec( dataname = "ADSL", select = select_spec( choices = variable_choices(data[["ADSL"]], c("BMRKR1", "SEX", "AGE", "RACE", "COUNTRY")), selected = "BMRKR1", multiple = FALSE, label = "Select variable:", fixed = FALSE ) ), row_facet = data_extract_spec( dataname = "ADRS", select = select_spec( choices = variable_choices(data[["ADRS"]], c("SEX", "RACE", "ARMCD", "PARAMCD")), selected = "SEX", multiple = FALSE, label = "Select variable:" ) ), col_facet = data_extract_spec( dataname = "ADRS", select = select_spec( choices = variable_choices(data[["ADRS"]], c("SEX", "RACE", "ARMCD", "PARAMCD", "AVISIT")), selected = "ARMCD", multiple = FALSE, fixed = FALSE, label = "Select variable:" ) ) ) # configuration for the wide and multiple long datasets mod5 <- tm_g_bivariate( label = "Wide and multiple long datasets", x = data_extract_spec( dataname = "ADRS", filter = list( filter_spec( vars = "PARAMCD", choices = value_choices(data[["ADRS"]], "PARAMCD", "PARAM"), selected = levels(data[["ADRS"]]$PARAMCD)[1], multiple = FALSE, label = "Select response:" ), filter_spec( vars = "AVISIT", choices = levels(data[["ADRS"]]$AVISIT), selected = levels(data[["ADRS"]]$AVISIT)[1], multiple = FALSE, label = "Select visit:" ) ), select = select_spec( choices = variable_choices(data[["ADRS"]], c("AVALC", "AVAL")), selected = "AVALC", multiple = FALSE, label = "Select variable:" ) ), y = data_extract_spec( dataname = "ADSL", select = select_spec( choices = variable_choices(data[["ADSL"]], c("BMRKR1", "SEX", "AGE", "RACE", "COUNTRY")), selected = "BMRKR1", multiple = FALSE, fixed = FALSE ) ), row_facet = data_extract_spec( dataname = "ADLB", filter = list( filter_spec( vars = "PARAMCD", choices = value_choices(data[["ADLB"]], "PARAMCD", "PARAM"), selected = levels(data[["ADLB"]]$PARAMCD)[1], multiple = FALSE, label = "Select measurement:" ), filter_spec( vars = "AVISIT", choices = levels(data[["ADLB"]]$AVISIT), selected = levels(data[["ADLB"]]$AVISIT)[1], multiple = FALSE, label = "Select visit:" ) ), select = select_spec( choices = "ARMCD", selected = NULL, multiple = FALSE, fixed = FALSE, label = "Select variable:" ) ), col_facet = data_extract_spec( dataname = "ADSL", select = select_spec( choices = variable_choices(data[["ADSL"]], c("SEX", "AGE", "RACE", "COUNTRY")), selected = NULL, multiple = FALSE, fixed = FALSE, label = "Select variable:" ) ), color_settings = TRUE, color = data_extract_spec( dataname = "ADSL", select = select_spec( choices = variable_choices(data[["ADSL"]], c("SEX", "RACE", "COUNTRY")), selected = NULL, multiple = FALSE, fixed = FALSE, label = "Select variable:" ) ), fill = data_extract_spec( dataname = "ADSL", select = select_spec( choices = variable_choices(data[["ADSL"]], c("SEX", "RACE", "COUNTRY")), selected = NULL, multiple = FALSE, fixed = FALSE, label = "Select variable:" ) ), size = data_extract_spec( dataname = "ADSL", select = select_spec( choices = variable_choices(data[["ADSL"]], c("AGE", "BMRKR1")), selected = NULL, multiple = FALSE, fixed = FALSE, label = "Select variable:" ) ), plot_height = c(600, 200, 2000), ggtheme = "gray" ) # Configuration for the same long datasets (same subset) mod6 <- tm_g_bivariate( label = "Same long datasets (same subset)", x = data_extract_spec( dataname = "ADRS", select = select_spec( choices = variable_choices(data[["ADRS"]], c("AVALC", "AVAL")), selected = "AVALC", multiple = FALSE, fixed = FALSE, label = "Select variable:" ) ), y = data_extract_spec( dataname = "ADRS", select = select_spec( choices = variable_choices(data[["ADRS"]], c("SEX", "RACE", "COUNTRY", "ARMCD", "BMRKR1", "BMRKR2")), selected = "BMRKR1", multiple = FALSE, fixed = FALSE, label = "Select variable:" ) ), row_facet = data_extract_spec( dataname = "ADRS", select = select_spec( choices = variable_choices(data[["ADRS"]], c("AVISIT", "PARAMCD")), selected = "PARAMCD", multiple = FALSE, label = "Select variables:" ) ), col_facet = data_extract_spec( dataname = "ADRS", select = select_spec( choices = variable_choices(data[["ADRS"]], c("AVISIT", "PARAMCD")), selected = "AVISIT", multiple = FALSE, label = "Select variables:" ) ) ) # Configuration for the same datasets (different subsets) mod7 <- tm_g_bivariate( label = "Same datasets (different subsets)", x = data_extract_spec( dataname = "ADLB", filter = list( filter_spec( vars = "PARAMCD", choices = value_choices(data[["ADLB"]], "PARAMCD", "PARAM"), selected = levels(data[["ADLB"]]$PARAMCD)[1], multiple = FALSE, label = "Select lab:" ), filter_spec( vars = "AVISIT", choices = levels(data[["ADLB"]]$AVISIT), selected = levels(data[["ADLB"]]$AVISIT)[1], multiple = FALSE, label = "Select visit:" ) ), select = select_spec( choices = "AVAL", selected = "AVAL", multiple = FALSE, fixed = TRUE ) ), y = data_extract_spec( dataname = "ADLB", filter = list( filter_spec( vars = "PARAMCD", choices = value_choices(data[["ADLB"]], "PARAMCD", "PARAM"), selected = levels(data[["ADLB"]]$PARAMCD)[1], multiple = FALSE, label = "Select lab:" ), filter_spec( vars = "AVISIT", choices = levels(data[["ADLB"]]$AVISIT), selected = levels(data[["ADLB"]]$AVISIT)[1], multiple = FALSE, label = "Select visit:" ) ), select = select_spec( choices = "AVAL", selected = "AVAL", multiple = FALSE, fixed = TRUE ) ), use_density = FALSE, row_facet = data_extract_spec( dataname = "ADLB", filter = list( filter_spec( vars = "PARAMCD", choices = value_choices(data[["ADLB"]], "PARAMCD", "PARAM"), selected = levels(data[["ADLB"]]$PARAMCD)[1], multiple = FALSE, label = "Select lab:" ), filter_spec( vars = "AVISIT", choices = levels(data[["ADLB"]]$AVISIT), selected = levels(data[["ADLB"]]$AVISIT)[1], multiple = FALSE, label = "Select category:" ) ), select = select_spec( choices = variable_choices(data[["ADLB"]], c("RACE", "SEX", "ARMCD", "ACTARMCD")), selected = NULL, multiple = FALSE, fixed = FALSE, label = "Select variable:" ) ), col_facet = data_extract_spec( dataname = "ADLB", filter = list( filter_spec( vars = "PARAMCD", choices = value_choices(data[["ADLB"]], "PARAMCD", "PARAM"), selected = levels(data[["ADLB"]]$PARAMCD)[1], multiple = FALSE, label = "Select lab:" ), filter_spec( vars = "AVISIT", choices = levels(data[["ADLB"]]$AVISIT), selected = levels(data[["ADLB"]]$AVISIT)[1], multiple = FALSE, label = "Select category:" ) ), select = select_spec( choices = variable_choices(data[["ADLB"]], c("RACE", "SEX", "ARMCD", "ACTARMCD")), selected = "ARMCD", multiple = FALSE, fixed = FALSE, label = "Select variables:" ) ), color_settings = TRUE, color = data_extract_spec( dataname = "ADSL", select = select_spec( choices = variable_choices(data[["ADSL"]], c("SEX", "RACE", "COUNTRY")), selected = NULL, multiple = FALSE, fixed = FALSE, label = "Select variable:" ) ), fill = data_extract_spec( dataname = "ADSL", select = select_spec( choices = variable_choices(data[["ADSL"]], c("SEX", "RACE", "COUNTRY")), selected = NULL, multiple = FALSE, fixed = FALSE, label = "Select variable:" ) ), size = data_extract_spec( dataname = "ADSL", select = select_spec( choices = variable_choices(data[["ADSL"]], c("AGE", "BMRKR1")), selected = NULL, multiple = FALSE, fixed = FALSE, label = "Select variable:" ) ), plot_height = c(600, 200, 2000), ggtheme = "gray" ) # initialize the app app <- init( data = data, modules = modules( # tm_g_bivariate ------ modules( label = "Bivariate plot", mod1, mod2, mod3, mod4, mod5, mod6, mod7 ) ) ) ``` ## 4 - Run the app A simple `shiny::shinyApp()` call will let you run the app. Note that app is only displayed when running this code inside an `R` session. ```{r shinyapp, echo=TRUE, results="hide", eval=base::interactive()} shinyApp(app$ui, app$server, options = list(height = 1024, width = 1024)) ``` ## 5 - Try it out in Shinylive ```{r shinylive_url, echo = FALSE, results = 'asis', eval = requireNamespace("roxy.shinylive", quietly = TRUE)} code <- paste0(c( knitr::knit_code$get("library"), knitr::knit_code$get("data"), knitr::knit_code$get("app"), knitr::knit_code$get("shinyapp") ), collapse = "\n") url <- roxy.shinylive::create_shinylive_url(code) cat(sprintf("[Open in Shinylive](%s)\n\n", url)) ``` ```{r shinylive_iframe, echo = FALSE, out.width = '150%', out.extra = 'style = "position: relative; z-index:1"', eval = requireNamespace("roxy.shinylive", quietly = TRUE) && knitr::is_html_output() && identical(Sys.getenv("IN_PKGDOWN"), "true")} knitr::include_url(url, height = "800px") ```