The teal.data
package specifies the data format used in
teal
applications.
A teal_data
is meant to be used for reproducibility
purposes. The class inherits from qenv
and we encourage to get familiar with teal.code
first. teal_data
has following characteristics:
$
,
get()
, ls()
, as.list()
work out
of the box.teal_data
is a locked environment, and data
modification is only possible through the
teal.code::eval_code()
and within.qenv()
functions.[
.teal_data
environment directly.To create an object of class teal_data
, use the
teal_data
function. teal_data
has a number of
methods to interact with the object.
library(teal.data)
# create teal_data object
my_data <- teal_data()
# run code within teal_data to create data objects
my_data <- within(
my_data,
{
data1 <- data.frame(id = 1:10, x = 11:20)
data2 <- data.frame(id = 1:10, x = 21:30)
data3 <- data.frame(id = 1:10, x = 31:40)
}
)
# get objects stored in teal_data
my_data[["data1"]]
my_data[["data2"]]
# limit objects stored in teal_data
my_data[c("data1", "data3")]
# get reproducible code
get_code(my_data)
# get code just for specific object
get_code(my_data, names = "data2")
# get datanames
names(my_data)
# print
print(my_data)
The primary function of teal_data
is to provide
reproducibility of data. We recommend to initialize empty
teal_data
, which marks object as verified, and
create datasets by evaluating code in the object, using
within
or eval_code
. Read more in teal_data Reproducibility.
my_data <- teal_data()
my_data <- within(my_data, data <- data.frame(x = 11:20))
my_data <- within(my_data, data$id <- seq_len(nrow(data)))
my_data # is verified
## ✅︎ verified teal_data object
## <environment: 0x5609f38f9538> 🔒
## Parent: <environment: package:teal.data>
## Bindings:
## - data: [data.frame]
The teal_data
class supports relational data.
Relationships between datasets can be described by joining keys and
stored in a teal_data
object. These relationships can be
read or set with the join_keys
function. See more in join_keys.
my_data <- teal_data()
my_data <- within(my_data, {
data <- data.frame(id = 1:10, x = 11:20)
child <- data.frame(id = 1:20, data_id = c(1:10, 1:10), y = 21:30)
})
join_keys(my_data) <- join_keys(
join_key("data", "data", key = "id"),
join_key("child", "child", key = "id"),
join_key("child", "data", key = c("data_id" = "id"))
)
join_keys(my_data)
## A join_keys object containing foreign keys between 2 datasets:
## child: [id]
## <-- data: [id]
## data: [id]
## --> child: [data_id]
## A join_keys object containing foreign keys between 1 datasets:
## child: [id]