Package 'syntrial'

Title: synthesize data from real clinical trial
Description: Syntrial takes as input the data of a clinical trial in SDTM format (https://www.cdisc.org/standards/foundational/sdtm). For each synthesized patient a number of source patients is selected. From the source patients' data randomly weighted numeric values or, for categorical variables, one value is selected in a modification of classical bootstrap.
Authors: Reinhold Koch [aut, cre]
Maintainer: Reinhold Koch <[email protected]>
License: GPL-3
Version: 0.4.2.9001
Built: 2024-12-30 03:06:56 UTC
Source: https://github.com/openpharma/syntrial

Help Index


categorical variables

Description

Determine all categorical variables of a dataframe and return a vector of their names.

Usage

categorical_vars(df)

Arguments

df

dataframe to be evaluated

Value

logical

Examples

categorical_vars(CRC305ABC_DM)

adverse event data from clinical trials CRC305ABC

Description

An anonymized dataset from 123 patients in SDTM format (https://en.wikipedia.org/wiki/SDTM).

Usage

CRC305ABC_AE

Format

A dataframe with 552 rows and 32 variables:

STUDYID

Study Identifier

DOMAIN

Domain Abbreviation

USUBJID

Unique Subject Identifier

AESEQ

Sequence Number

AESPID

Sponsor-Defined Identifier

AETERM

Reported Term for the Adverse Event

AEMODIFY

Modified Reported Term

AELLT

Lowest Level Term

AELLTCD

Lowest Level Term Code

AEDECOD

Dictionary-Derived Term

AEPTCD

Preferred Term Code

AEHLT

High Level Term

AEHLTCD

High Level Term Code

AEHLGT

High Level Group Term

AEHLGTCD

High Level Group Term Code

AECAT

Category for Adverse Event

AEPRESP

Pre-Specified Adverse Event

AESOC

Primary System Organ Class

AESOCCD

Primary System Organ Class Code

AELOC

Location of Event

AESEV

Severity/Intensity

AESER

Serious Event

AEACN

Action Taken with Study Treatment

AEREL

Causality

AEPATT

Pattern of Adverse Event

AEOUT

Outcome of Adverse Event

AESTDTC

Start Date/Time of Adverse Event

AEENDTC

End Date/Time of Adverse Event

AESTDY

Study Day of Start of Adverse Event

AEENDY

Study Day of End of Adverse Event

AEDUR

Duration of Adverse Event

AESIZE

Measure of Adverse Event

Source

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/QPHMKX

CRC305ABC_AE <- readr::read_tsv('https://dataverse.harvard.edu/api/access/datafile/3462713?gbrecs=false',
                                col_types = 'cccicccciciciciccciccccccccciici',
                                locale = readr::locale(encoding = 'latin1')
                               )

demographic data from clinical trials CRC305ABC

Description

An anonymized dataset of 123 patients in SDTM format (https://en.wikipedia.org/wiki/SDTM).

Usage

CRC305ABC_DM

Format

A dataframe with 123 rows and 19 variables:

STUDYID

Study Identifier

DOMAIN

Domain Abbreviation

USUBJID

Unique Subject Identifier

SUBJID

Subject Identifier for the Study

RFSTDTC

Subject Reference Start Date/Time

RFENDTC

Subject Reference End Date/Time

RFXSTDTC

Date/Time of First Study Treatment

RFXENDTC

Date/Time of Last Study Treatment

RFICTC

Date/Time of Informed Consent

RFPENDTC

Date/Time of End of Participation

SITEID

Study Site Identifier

AGE

Age

AGEU

Age Units

SEX

Sex

RACE

Race

ETHNIC

Ethnicity

ARMCD

Planned Arm Code

ARM

Description of Planned Arm

COUNTRY

Country

Source

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/QPHMKX

CRC305ABC_DM <- readr::read_tsv('https://dataverse.harvard.edu/api/access/datafile/3462712?gbrecs=false',
                                 col_types = 'ccccccccccciccccccc',
                                 locale = readr::locale(encoding = 'latin1')
                               )

lab data from clinical trials CRC305ABC

Description

An anonymized dataset from 123 patients in SDTM format (https://en.wikipedia.org/wiki/SDTM).

Usage

CRC305ABC_LB

Format

A dataframe with 55660 rows and 31 variables:

STUDYID

Study Identifier

DOMAIN

Domain Abbreviation

USUBJID

Unique Subject Identifier

LBSEQ

Sequence Number

LBREFID

Specimen ID

LBTESTCD

Lab Test or Examination Short Name

LBTEST

Lab Test or Examination Name

LBCAT

Category for Lab Test

LBORRES

Result or Finding in Original Units

LBORRESU

Original Units

LBORNRLO

Reference Range Lower Limit in Orig Unit

LBORNRHI

Reference Range Upper Limit in Orig Unit

LBSTRESC

Character Result/Finding in Std Format

LBSTRESN

Numeric Result/Finding in Standard Units

LBSTRESU

Standard Units

LBSTNRLO

Reference Range Lower Limit-Std Units

LBSTNRHI

Reference Range Upper Limit-Std Units

LBNRIND

Reference Range Indicator

LBSTAT

Completion Status

LBREASND

Reason Test Not Done

LBNAM

Vendor Name

LBSPEC

Speciment Type

LBSPCCND

Specimen Condition

LBBLFL

Baseline Flag

LBFAST

Fasting Status

VISITNUM

Visit Number

VISIT

Visit Name

LBDTC

Date/Time of Specimen Collection

LBDY

Study Day of Specimen Collection

LBTPT

Planned Time Point Name

LBTPTNUM

Planned Time Point Number

Source

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/QPHMKX

CRC305ABC_LB <- readr::read_tsv('https://dataverse.harvard.edu/api/access/datafile/3462715?gbrecs=false',
                                col_types = 'cccicccccccccdcddcccccccciccici',
                                locale = readr::locale(encoding = 'latin1')
                                )

vital sign data from clinical trials CRC305ABC

Description

An anonymized dataset from 123 patients in SDTM format (https://en.wikipedia.org/wiki/SDTM).

Usage

CRC305ABC_VS

Format

A dataframe with 20581 rows and 25 variables:

STUDYID

Study Identifier

DOMAIN

Domain Abbreviation

USUBJID

Unique Subject Identifier

VSSEQ

Sequence Number

VSTESTCD

Vital Signs Test Short Name

VSTEST

Vital Signs Test Name

VSPOS

Vital Signs Position of Subject

VSORRES

Result or Finding in Original Units

VSORRESU

Original Units

VSSTRESC

Character Result/Finding in Std Format

VSSTRESN

Numeric Result/Finding in Standard Units

VSSTRESU

Standard Units

VSSTAT

Completion Status

VSREASND

Reason Not Performed

VSLOC

Location of Vital Signs Measurement

VSBLFL

Baseline Flag

VISITNUM

Visit Number

VISIT

Visit Name

VSDTC

Date/Time of Measurements

VSDY

Study Day of Vital Signs

VSTPT

Planned Time Point Name

VSTPTNUM

Planned Time Point Number

VSORNRLO

Reference Range Lower Limit

VSORNRHI

Reference Range Upper Limit

VSNRIND

Reference Range Indicator

Source

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/QPHMKX

CRC305ABC_VS <- readr::read_tsv('https://dataverse.harvard.edu/api/access/datafile/3462714?gbrecs=false',
                                col_types = 'ccciccccccdcccccicciciccc',
                                locale = readr::locale(encoding = 'latin1')
                                )

domain identifier variables

Description

Return identifier variables of a domain.

Usage

domain_ids(df)

Arguments

df

dataframe of one SDTM domain

Value

character vector of identifier variable names

Examples

domain_ids(CRC305ABC_DM)

maximum entropy

Description

Compute maximum shannon entropy log(N, base=2) of a number or of a dataframe or matrix. In the latter case the number of rows is used.

Usage

Hmax(N)

Arguments

N

a number, a dataframe, or a matrix

Value

log(N, base=2)

Examples

Hmax(CRC305ABC_DM)

Shannon entropy structure details of a dataframe

Description

Hstruc computes the Shannon entropy of each dataframe's variable and checks for

  • constant,

  • record identifying, or

  • 1:1 equivalent

variables.

Usage

Hstruc(.data)

Arguments

.data

dataframe

Value

A list

Examples

Hstruc(CRC305ABC_DM)

generate synthesis dataframe

Description

synth_df() generates the tibble that relates original and synthetic new persons. This synthesis dataframe should be kept secret to protect privacy of the original persons; it is the base for all synthetic dataframes/tibbles that are generated.

Usage

synth_df(USUBJID, n_new = 10, width = 3, maxweight = 2/3)

Arguments

USUBJID

character vector of person identifiers

n_new

number of new persons to generate, defaults to 10

width

number of persons from original trial to use for new person synthesis, defaults to 3

maxweight

maximum allowed weight for one person for synthesis of new person, defaults to 2/3

Value

The synthesis tibble relates new synthetic persons to source persons and specifies the weight of each source person's contribution.

Examples

synth_df(USUBJID = letters)

synthesize a SDTM dataframe

Description

Create a synthetic dataframe from syndf and a source SDTM dataframe.

Usage

synthesize(syndf, df, cat_fuzz = 1)

Arguments

syndf

synthesis dataframe

df

original SDTM dataframe

cat_fuzz

fuzz factor for noise on categorical variables, defaults to 1

Value

synthesized SDTM dataframe

Examples

synthesize(synth_df(CRC305ABC_DM$USUBJID), CRC305ABC_DM)

synthesize events dataframe

Description

synthesize events dataframe

Usage

synthesize_E(syndf, df, cat_fuzz = 1)

Arguments

syndf

synthesis dataframe

df

original SDTM dataframe

cat_fuzz

fuzz factor for noise on categorical variables, defaults to 1

Value

synthesized SDTM events dataframe

Examples

## Not run: synthesize_E(synth_df(CRC305ABC_DM$USUBJID), CRC305ABC_AE)

Synthetic "twin trial" from real clinical trial data in SDTM format.

Description

Stricter privacy regulations affect not only sharing of clinical trial data but also development of analysis scripts and reports. Synthetic data with same statistical properties as the original data can be used instead, possibly even for data exploration.

Details

syntrial synthesizes data in SDTM format and protects privacy via an intermediate mechanism between frequentist and Bayesian bootstrap. For each synthesized patient a number of source patients is selected. From the source patients' data randomly weighted numeric values or, for categorical variables, one value is selected.

synthdf

create the table linking real and synthetic persons

synthesize

synthesize demographic and findings data

synthesize_E

synthesize events data