
Package: staged.dependencies (via r-universe)
October 7, 2024

Type Package

Title Install R packages from Particular Git Branches

Version 0.3.1.9001

Imports checkmate, desc, devtools, digest, dplyr, fs, git2r, glue,
httr, jsonlite, methods, rcmdcheck, remotes, rlang, stats,
tidyr, utils, withr, yaml,

Description When developing multiple dependent packages, it is often
useful to introduce development stages (devel, pre-release,
release) that synchronize these packages. This package provides
an implementation of development stages via branch naming
rules. It defines RStudio addins that allow to install the
matching upstream and downstream dependencies.

License file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Roxygen list(markdown = TRUE)

Suggests knitr, miniUI, mockery, renv, rmarkdown, rstudioapi, shiny,
testthat (>= 2.1.0), visNetwork

VignetteBuilder knitr

Collate 'argument_convention.R' 'caching.R' 'dependencies.R'
'dependencies_app.R' 'dependencies_helper.R' 'git_tools.R'
'graph_methods.R' 'host.R' 'ref_strategy.R' 'renv.R'
'rstudio_jobs.R' 'rstudio_addins.R' 'utils.R' 'zzz.R'

Repository https://pharmaverse.r-universe.dev

RemoteUrl https://github.com/openpharma/staged.dependencies

RemoteRef HEAD

RemoteSha fb124997306b35d44a0225bb4b400bf7258c4c75

1

2 build_check_install

Contents

build_check_install . 2
check_downstream . 4
check_downstream_job . 5
check_yamls_consistent . 6
clear_cache . 7
dependency_table . 8
determine_ref . 10
get_all_external_dependencies . 11
get_local_pkgs_from_config . 13
install_deps . 13
install_deps_app . 15
install_deps_job . 16
install_repo_add_sha . 18
topological_sort . 18
update_with_direct_deps . 19
verbose_sd_option . 19

Index 21

build_check_install Build, check and install internal dependencies

Description

Build, check and install internal dependencies

Usage

build_check_install(
dep_structure,
install_direction = "all",
steps = c("build", "check", "install"),
rcmd_args = list(check = c("--no-multiarch", "--with-keep.source", "--install-tests")),
artifact_dir = tempfile(),
install_external_deps = TRUE,
upgrade = "never",
package_list = NULL,
dry = FALSE,
verbose = 1,
...

)

build_check_install 3

Arguments

dep_structure (dependency_structure) output of function dependency_table; uses dep_structure$table
to infer the packages to apply action to and infer installation order; uses dep_structure$deps
to infer upstream dependencies

install_direction

"upstream", "downstream" or "all"; which packages to install (according to de-
pendency structure). By default this is only "upstream"

steps (character vector) subset of "build", "check", "install"; useful to skip checking
for example

rcmd_args (list) with names build, check, install which are vectors that are passed as
separate arguments to the R CMD commands

artifact_dir (character) directory to place built R packages and logs
install_external_deps

logical to describe whether to install external dependencies of package using
remotes::install_deps() (or renv::install() if inside an renv environ-
ment) .

upgrade argument passed to remotes::install_deps(), defaults to 'never'. Ignored
if inside an renv environment.

package_list (character) If not NULL, an additional filter, only packages on this list will be
considered and their dependencies installed if needed (advanced usage only).

dry (logical) dry run that outputs what would happen without actually doing it.

verbose (numeric)
verbosity level, incremental; (0: None, 1: packages that get installed + high-
level git operations, 2: includes git checkout infos)

... Arguments passed on to install_deps

install_project (logical) whether to also install the current package (i.e.
the package named in dependency_structure$current_pkg), ignored un-
less install_direction = "upstream" (because downstream deps auto-
matically install all their upstream deps)

Value

list with entries

• artifact_dir: artifact_dir directory with log files

• pkg_actions: data.frame of performed actions

Examples

Not run:
x <- dependency_table(project = ".", verbose = 1)
build_check_install(x, steps = c("build", "check"), verbose = 1)
build_check_install(x, artifact_dir = "../output")

End(Not run)

4 check_downstream

check_downstream Check & install downstream dependencies

Description

Installs downstream R packages as specified in a dependency_structure object and then runs
rcmdcheck (R CMD check) on the downstream dependencies.

Usage

check_downstream(
dep_structure,
distance = NULL,
check_args = c("--no-multiarch", "--with-keep.source", "--install-tests"),
only_tests = FALSE,
install_external_deps = TRUE,
upgrade = "never",
package_list = NULL,
dry = FALSE,
verbose = 1,
...

)

Arguments

dep_structure (dependency_structure) output of function dependency_table; uses dep_structure$table
to infer the packages to apply action to and infer installation order; uses dep_structure$deps
to infer upstream dependencies

distance (numeric) additional filter to only install downstream packages at most this dis-
tance from the dependency_structure$current_pkg (advanced use only)

check_args (list) arguments passed to rcmdcheck

only_tests (logical) whether to only run tests (rather than checks)
install_external_deps

logical to describe whether to install external dependencies of package using
remotes::install_deps() (or renv::install() if inside an renv environ-
ment) .

upgrade argument passed to remotes::install_deps(), defaults to 'never'. Ignored
if inside an renv environment.

package_list (character) If not NULL, an additional filter, only packages on this list will be
considered and their dependencies installed if needed (advanced usage only).

dry (logical) dry run that outputs what would happen without actually doing it.

verbose (numeric)
verbosity level, incremental; (0: None, 1: packages that get installed + high-
level git operations, 2: includes git checkout infos)

check_downstream_job 5

... Arguments passed on to install_deps

install_project (logical) whether to also install the current package (i.e.
the package named in dependency_structure$current_pkg), ignored un-
less install_direction = "upstream" (because downstream deps auto-
matically install all their upstream deps)

install_direction "upstream", "downstream" or "all"; which packages to in-
stall (according to dependency structure). By default this is only "upstream"

Value

data.frame of performed actions

Examples

Not run:
x <- dependency_table(project = ".", verbose = 1)

check_downstream(x, verbose = 1)
check_downstream(x, verbose = 1, only_test = TRUE, check_args = c("--no-manual"))

End(Not run)

check_downstream_job Check & install downstream job

Description

Check & install downstream job

Usage

check_downstream_job(
project = ".",
verbose = 1,
create_args = list(renv_profile = Sys.getenv("RENV_PROFILE")),
...

)

Arguments

project (character) If project_type is local then directory of project (for which to
calculate the dependency structure); must be a git repository. If project_type
is repo@host then should be character of the form openpharma/stageddeps.food@https://github.com
If host is not included in the string then the default https://github.com is as-
sumed.

verbose (numeric)
verbosity level, incremental; (0: None, 1: packages that get installed + high-
level git operations, 2: includes git checkout infos)

6 check_yamls_consistent

create_args named list - additional arguments passed to dependency_table function

... Arguments passed on to check_downstream

distance (numeric) additional filter to only install downstream packages at
most this distance from the dependency_structure$current_pkg (ad-
vanced use only)

check_args (list) arguments passed to rcmdcheck

only_tests (logical) whether to only run tests (rather than checks)
dep_structure (dependency_structure) output of function dependency_table;

uses dep_structure$table to infer the packages to apply action to and
infer installation order; uses dep_structure$deps to infer upstream de-
pendencies

install_external_deps logical to describe whether to install external depen-
dencies of package using remotes::install_deps() (or renv::install()
if inside an renv environment) .

upgrade argument passed to remotes::install_deps(), defaults to 'never'.
Ignored if inside an renv environment.

package_list (character) If not NULL, an additional filter, only packages
on this list will be considered and their dependencies installed if needed
(advanced usage only).

dry (logical) dry run that outputs what would happen without actually doing
it.

See Also

check_downstream

Examples

Not run:
check_downstream_job(check_args = Sys.getenv("RCMDCHECK_ARGS"))
check_downstream_job(
check_args = Sys.getenv("RCMDCHECK_ARGS"),
list(create_arg = list(ref = "6_makegraph@main"))

)
check_downstream_job(only_tests = TRUE)

End(Not run)

check_yamls_consistent

Checks that the staged dependency yamls are consistent with the de-
pendencies listed in the DESCRIPTION files

Description

Checks that the staged dependency yamls are consistent with the dependencies listed in the DE-
SCRIPTION files

clear_cache 7

Usage

check_yamls_consistent(dep_structure, skip_if_missing_yaml = FALSE)

Arguments

dep_structure dependency_structure object

skip_if_missing_yaml

logical should checks be skipped on packages without yaml files. Default
FALSE

Details

This function explicitly checks that for all packages in the dependency_structure object: all
upstream and downstream packages specified in each yaml file are found in the appropriate package
DESCRIPTION file

Value

NULL if successful. An error is thrown if inconsistencies found

Examples

Not run:
x <- dependency_table(project = ".")
check_yamls_consistent(x)

End(Not run)

clear_cache Clear the repository cache

Description

Use this function to clear the package cache of some or all repositories (depending on pattern) if
the git operations fail.

Usage

clear_cache(pattern = "*")

Arguments

pattern files to remove, see unlink (wildcards * and ? allowed)

8 dependency_table

Examples

Not run:
clear_cache()
clear_cache("*elecinfra*")

End(Not run)

dependency_table Create dependency structure of your package collection

Description

Create dependency structure of your package collection

Usage

dependency_table(
project = ".",
project_type = c("local", "repo@host")[1],
ref = NULL,
local_repos = if ((project_type) == "local") get_local_pkgs_from_config() else NULL,
direction = "all",
fallback_branch = "main",
renv_profile = NULL,
verbose = 1

)

Arguments

project (character) If project_type is local then directory of project (for which to
calculate the dependency structure); must be a git repository. If project_type
is repo@host then should be character of the form openpharma/stageddeps.food@https://github.com
If host is not included in the string then the default https://github.com is as-
sumed.

project_type (character) See project argument.

ref (character) git branch (or tag) inferred from the branch of the project if not pro-
vided; warning if not consistent with current branch of project. If project_type
is not local then this argument must be provided.

local_repos (data.frame) repositories that should be taken from local file system rather than
cloned; columns are repo, host, directory.

direction (character) direction in which to discover packages either "upstream","downstream"
or "all".

fallback_branch

(character) the default branch to try to use if no other matches found. It de-
faults to "main".

dependency_table 9

renv_profile (character) the name of the renv profile of the renv.lock files to be included
from the repos. The standard renv.lock file uses the default NULL argument
here.

verbose (numeric)
verbosity level, incremental; (0: None, 1: packages that get installed + high-
level git operations, 2: includes git checkout infos)

Value

dependency_structure An S3 object with the following items:

project project argument used to create the object (absolute path if project_type is local

project_type project_type used to create object

current_pkg The R package name of code in the project directory

table data.frame contain one row per r package discovered, with the following rows package_name,
type (current, upstream, downstream or other), distance (minimum number of steps
from current_pkg), ref, repo, host, sha cache_dir, accessible, installable and install_index
(the order to install the packages). Note some items are are suppressed when printing the ob-
ject

deps list with three elements, upstream_depsis the graph where edges point from a package to
its upstream dependencies. They are ordered in installation order. The downstream_deps
list is the graph with the edge direction flipped, and is ordered in reverse installation order.
external contains the external R packages found in the description files of the internal pack-
ages. It is a dataframe of the form returned by desc::desc_get_deps

direction direction argument used to create object
renv_files named list containing the json of the renv.lock files for the chosen profile for each

repo. An entry to the list is NULL if a repos does not have the required lock file

Examples

Not run:
dependency_table(verbose = 1)
dependency_table(

project = "openpharma/stageddeps.food@https://github.com",
project_type = "repo@host",
ref = "main"

)
x <- dependency_table(

project = "path/to/project",
direction = c("upstream")

)
print(x)
plot(x)

End(Not run)

10 determine_ref

determine_ref Determine the branch/tag to install based on feature (staging rules)

Description

Return the git ref (tag or branch) of the repo to install given the available branches and tags.

Usage

determine_ref(ref, available_refs, fallback_branch = "main", branch_sep = "@")

Arguments

ref ref we want to build

available_refs data.frame with columns ref the names of the available refs and type (branch
or tag)

fallback_branch

the default branch to try to use if no other matches found

branch_sep separator between branches in feature, / does not work well with git because
it clashes with the filesystem paths

Details

A ref is either a tag or branches separated by slashes of the form name1@name2@...@nameN. Where
separator is specified by branch_sep argument

This function checks for an exact match for the tag if this is not found then among the available
branches, it searches in the order name1@name2@...@nameN, name2@name3@...@nameN, name3@name4@...@nameN,
..., nameN

Value

branch/tag to choose to match feature, error if no suitable branch was provided with the type at-
tribute "tag" or "branch"

Examples

determine_ref(
"feature1",
data.frame(ref = c("main", "feature1"), type = "branch")

) == structure("feature1", type = "branch")

determine_ref(
"feature1@devel",
data.frame(ref = c("main", "devel", "feature1"), type = "branch")

) == structure("devel", type = "branch")

determine_ref(

get_all_external_dependencies 11

ref = "fix1@feature1@devel",
available_refs = data.frame(

ref = c(
"main", "devel", "feature1", "feature1@devel",
"fix1@feature1@devel", "fix1"

),
type = "branch"

)
) == structure("fix1@feature1@devel", type = "branch")

determine_ref(
"fix1@feature1@devel",
data.frame(

ref = c("main", "devel", "feature1", "feature1@devel", "fix1"),
type = "branch"

)
) == structure("feature1@devel", type = "branch")

determine_ref(
"fix1@feature1@devel",
data.frame(ref = c("main", "devel", "feature1", "fix1"), type = "branch")

) == structure("devel", type = "branch")

determine_ref("feature1@release", data.frame(ref = c("main", "devel"), type = "branch"))

error because neither `feature1@release` nor `release` branch exists
determine_ref("feature1@release", data.frame(ref = c("master", "devel"), type = "branch"))

tag examples
determine_ref(

"v0.1",
data.frame(ref = c("main", "devel", "feature1", "v0.1"), type = c(rep("branch", 3), "tag"))

) == structure("v0.1", type = "tag")

determine_ref(
"v0.2",
data.frame(ref = c("main", "devel", "feature1", "v0.1"), type = c(rep("branch", 3), "tag"))

) == structure("main", type = "branch")

get_all_external_dependencies

List the external R packages required to be installed

Description

List the external R packages required to be installed

12 get_all_external_dependencies

Usage

get_all_external_dependencies(
dep_structure,
available_packages = as.data.frame(utils::available.packages()),
install_direction = "upstream",
package_list = NULL,
from_internal_dependencies = c("Depends", "Imports", "LinkingTo", "Suggests"),
from_external_dependencies = c("Depends", "Imports", "LinkingTo")

)

Arguments

dep_structure (dependency_structure) output of function dependency_table; uses dep_structure$table
to infer the packages to apply action to and infer installation order; uses dep_structure$deps
to infer upstream dependencies

available_packages

(data.frame) A dataframe of the format given by as.data.frame(utils::available.packages).
It is unlikely this default needs to be changed; however you need to ensure the
options("repos") contains the urls of all expected repos (e.g. Bioconductor).

install_direction

"upstream", "downstream" or "all"; which packages to install (according to de-
pendency structure). By default this is only "upstream"

package_list (character) If not NULL, an additional filter, only packages on this list will be
considered and their dependencies installed if needed (advanced usage only).

from_internal_dependencies

Vector chosen from c("Depends", "Imports", "LinkingTo", "Suggests",
"Enhances") which fields of the DESCRIPTION file of the internal packages
should be included. Default: c("Depends", "Imports", "LinkingTo", "Suggests")

from_external_dependencies

Vector chosen from c("Depends", "Imports", "LinkingTo", "Suggests",
"Enhances") which fields of the DESCRIPTION file of the internal packages
should be included. Default: c("Depends", "Imports", "LinkingTo")

Value

A vector of ’external’ R packages required to install the selected ’internal’ packages, ordered by
install order (unless from_external_dependencies does not include "Depends", "Imports" and
"LinkingTo"). The core R packages (e.g. methods, utils) are not included. The output can be
used with remotes::system_requirements to extract the system requirements needed for your
packages, see example below.

Examples

Not run:
x <- dependency_table("openpharma/stageddeps.electricity",

project_type = "repo@host", feature = "main"
)

get_local_pkgs_from_config 13

get external package dependencies
ex_deps <- get_all_external_dependencies(x)
print(ex_deps)

get system dependencies (in this case there are none)
unique(unlist(lapply(ex_deps,

function(pkg, ...) {
remotes::system_requirements(package = pkg, ...)

},
os = "ubuntu",
os_release = "20.04"

)))

End(Not run)

get_local_pkgs_from_config

Loads the config file and extracts local_packages

Description

Checks that all directories exist and are absolute paths.

Usage

get_local_pkgs_from_config()

Value

local_packages

Examples

get_local_pkgs_from_config()

install_deps Install dependencies of project

Description

Given a dependency_structure object, install the R packages

14 install_deps

Usage

install_deps(
dep_structure,
install_project = TRUE,
install_direction = "upstream",
install_external_deps = TRUE,
upgrade = "never",
package_list = NULL,
dry = FALSE,
verbose = 1,
...

)

Arguments

dep_structure (dependency_structure) output of function dependency_table; uses dep_structure$table
to infer the packages to apply action to and infer installation order; uses dep_structure$deps
to infer upstream dependencies

install_project

(logical) whether to also install the current package (i.e. the package named in
dependency_structure$current_pkg), ignored unless install_direction
= "upstream" (because downstream deps automatically install all their upstream
deps)

install_direction

"upstream", "downstream" or "all"; which packages to install (according to de-
pendency structure). By default this is only "upstream"

install_external_deps

logical to describe whether to install external dependencies of package using
remotes::install_deps() (or renv::install() if inside an renv environ-
ment) .

upgrade argument passed to remotes::install_deps(), defaults to 'never'. Ignored
if inside an renv environment.

package_list (character) If not NULL, an additional filter, only packages on this list will be
considered and their dependencies installed if needed (advanced usage only).

dry (logical) dry run that outputs what would happen without actually doing it.

verbose (numeric)
verbosity level, incremental; (0: None, 1: packages that get installed + high-
level git operations, 2: includes git checkout infos)

... Additional args passed to remotes::install_deps(). Ignored if inside an
renv environment.

Value

data.frame of performed actions

install_deps_app 15

See Also

determine_branch

Examples

Not run:
x <- dependency_table(project = "./path/to/project")

install_deps(x)

install all dependencies
install_deps(x, install_direction = "all")

End(Not run)

install_deps_app Gadget or Shiny app to select the dependencies to install

Description

The dependencies are obtained by traversing the upstream and downstream repositories in the pack-
age’s staged dependencies yaml files starting from project.

Usage

install_deps_app(
default_repo = NULL,
default_host = "https://github.com",
default_ref = "main",
fallback_branch = "main",
run_gadget = TRUE,
run_as_job = TRUE,
verbose = 1,
install_external_deps = TRUE,
renv_profile = NULL,
upgrade = "never",
...

)

Arguments

default_repo (character) the repository name for the dependency graph to be created for, for
example, "openpharma/stageddeps.water". If NULL this must be entered by
app user and can always be changed by the user.

default_host (character) the host for the repository for the dependency graph to be created
for by default "https://github.com". If NULL this must be entered by app
user and can always be changed by the user.

16 install_deps_job

default_ref (character) default ref (branch/tag), see also the parameter ref of \link{dependency_table}.
If NULL this must be entered by app user and can always be changed by the user.

fallback_branch

(character) the default branch to try to use if no other matches found
run_gadget (logical) whether to run the app as a gadget
run_as_job (logical) whether to run the installation as an RStudio job.
verbose (numeric)

verbosity level, incremental; (0: None, 1: packages that get installed + high-
level git operations, 2: includes git checkout infos)

install_external_deps

logical to describe whether to install external dependencies of package using
remotes::install_deps() (or renv::install() if inside an renv environ-
ment) .

renv_profile (character) the name of the renv profile of the renv.lock files to be included
from the repos. The standard renv.lock file uses the default NULL argument
here.

upgrade argument passed to remotes::install_deps(), defaults to 'never'. Ignored
if inside an renv environment.

... Additional args passed to remotes::install_deps(). Ignored if inside an
renv environment.

Value

shiny.app or value returned by app (executed as a gadget)

Examples

Not run:
install_deps_app("openpharma/stageddeps.food")

End(Not run)

install_deps_job Install dependencies job

Description

Install dependencies job

Usage

install_deps_job(
project = ".",
project_type = "local",
verbose = 1,
create_args = list(renv_profile = Sys.getenv("RENV_PROFILE")),
...

)

install_deps_job 17

Arguments

project (character) If project_type is local then directory of project (for which to
calculate the dependency structure); must be a git repository. If project_type
is repo@host then should be character of the form openpharma/stageddeps.food@https://github.com
If host is not included in the string then the default https://github.com is as-
sumed.

project_type (character) See project argument.
verbose (numeric)

verbosity level, incremental; (0: None, 1: packages that get installed + high-
level git operations, 2: includes git checkout infos)

create_args named list - additional arguments passed to dependency_table function
... Arguments passed on to install_deps

dep_structure (dependency_structure) output of function dependency_table;
uses dep_structure$table to infer the packages to apply action to and
infer installation order; uses dep_structure$deps to infer upstream de-
pendencies

install_project (logical) whether to also install the current package (i.e.
the package named in dependency_structure$current_pkg), ignored un-
less install_direction = "upstream" (because downstream deps auto-
matically install all their upstream deps)

install_direction "upstream", "downstream" or "all"; which packages to in-
stall (according to dependency structure). By default this is only "upstream"

install_external_deps logical to describe whether to install external depen-
dencies of package using remotes::install_deps() (or renv::install()
if inside an renv environment) .

upgrade argument passed to remotes::install_deps(), defaults to 'never'.
Ignored if inside an renv environment.

package_list (character) If not NULL, an additional filter, only packages
on this list will be considered and their dependencies installed if needed
(advanced usage only).

dry (logical) dry run that outputs what would happen without actually doing
it.

See Also

install_deps

Examples

Not run:
install_deps_job()
install_deps_job(create_args = list(ref = "6_makegraph@main"))

install all dependencies
install_deps_job(create_args = list(direction = "all"))
install_deps_job(dry_install = TRUE)

End(Not run)

18 topological_sort

install_repo_add_sha Install a git repository

Description

It adds the git SHA to the DESCRIPTION file, so that the package does not need to be installed
again when the same commit is already installed.

Usage

install_repo_add_sha(repo_dir, ...)

Arguments

repo_dir directory of repo

... Additional args passed to remotes::install_deps. Note upgrade is set to
"never" and shouldn’t be passed into this function.

topological_sort Topological graph sort

Description

Graph is a list which for each node contains a vector of child nodes in the returned list, parents
appear before their children.

Usage

topological_sort(graph)

Arguments

graph (named list) list with node vector elements mapping from child to its parents
(upstream dependencies)

Details

Implementation of Kahn algorithm with a modification to maintain the order of input elements.

Value

vector listing parents before children

update_with_direct_deps 19

Examples

staged.dependencies:::topological_sort(list(A = c(), B = c("A"), C = c("B"), D = c("A")))
staged.dependencies:::topological_sort(list(D = c("A"), A = c(), B = c("A"), C = c("B")))
staged.dependencies:::topological_sort(list(D = c("A"), B = c("A"), C = c("B"), A = c()))
Not run:
cycle
topological_sort(list(A = c("B"), B = c("C", "A"), C = c()))

End(Not run)

update_with_direct_deps

Update existing stage_dependencies yaml file

Description

Using the existing stage_dependencies yaml file ’graph’ to define internal dependencies, update the
project yaml file to include to include all direct (i.e. distance 1) upstream and downstream repos

Usage

update_with_direct_deps(dep_structure)

Arguments

dep_structure dep_structure object, output of dependency_table function with project_type
= "local"

verbose_sd_option Set staged.dependencies verbosity

Description

Functions to set and remove the option parameter verbose_level_staged.deps. It can assume
integer values between c(0, 1, 2). This will set this variable as an option with options() and
getOption().

Usage

verbose_sd_set(verbose = 1)

verbose_sd_get()

verbose_sd_rm()

20 verbose_sd_option

Arguments

verbose (numeric)
verbosity level, incremental; (0: None, 1: packages that get installed + high-
level git operations, 2: includes git checkout infos)

Examples

verbose_sd_set(2)
verbose_sd_get() # 2, the inserted value
verbose_sd_rm()
verbose_sd_get() # 1, the default

Index

build_check_install, 2

check_downstream, 4, 6
check_downstream_job, 5
check_yamls_consistent, 6
clear_cache, 7

dependency_table, 8
determine_ref, 10

get_all_external_dependencies, 11
get_local_pkgs_from_config, 13
getOption(), 19

install_deps, 3, 5, 13, 17
install_deps_app, 15
install_deps_job, 16
install_repo_add_sha, 18

options(), 19

remotes::install_deps(), 3, 4, 6, 14, 16, 17
renv::install(), 3, 4, 6, 14, 16, 17

topological_sort, 18

update_with_direct_deps, 19

verbose_sd_get (verbose_sd_option), 19
verbose_sd_option, 19
verbose_sd_rm (verbose_sd_option), 19
verbose_sd_set (verbose_sd_option), 19

21

	build_check_install
	check_downstream
	check_downstream_job
	check_yamls_consistent
	clear_cache
	dependency_table
	determine_ref
	get_all_external_dependencies
	get_local_pkgs_from_config
	install_deps
	install_deps_app
	install_deps_job
	install_repo_add_sha
	topological_sort
	update_with_direct_deps
	verbose_sd_option
	Index

