Title: | Data Quality Checks for Study Data Tabulation Model (SDTM) Datasets |
---|---|
Description: | A series of checks to identify common issues in Study Data Tabulation Model (SDTM) datasets. These checks are intended to be generalizable, actionable, and meaningful for analysis. |
Authors: | Will Harris [aut, cre], Sara Bodach [aut], Edgar Manukyan [aut], Adrian Waddell [aut], Ross Farrugia [aut], F. Hoffmann-La Roche AG [cph, fnd] |
Maintainer: | Will Harris <[email protected]> |
License: | Apache License (>= 2) |
Version: | 1.0.0.01 |
Built: | 2025-01-13 06:21:04 UTC |
Source: | https://github.com/pharmaverse/sdtmchecks |
This checks for a COVID-19 AE reported with Action Taken (AEACN*==DRUG WITHDRAWN) but without a corresponding DS record indicating DS.DSDECOD with "ADVERSE EVENT" on any Treatment Discontinuation form. This relies on DSSPID with the string "DISCTX" when DSCAT == "DISPOSITION EVENT" to select Treatment Discontinuation records in DS, as DSSCAT typically includes a text string referring to specific study drug(s).
check_ae_aeacn_ds_disctx_covid( AE, DS, covid_terms = c("COVID-19", "CORONAVIRUS POSITIVE") )
check_ae_aeacn_ds_disctx_covid( AE, DS, covid_terms = c("COVID-19", "CORONAVIRUS POSITIVE") )
AE |
Adverse Events SDTM dataset with variables USUBJID, AETERM, AEDECOD, AESTDTC, AEACNx |
DS |
Disposition SDTM dataset with variables USUBJID, DSSPID, DSCAT, DSDECOD |
covid_terms |
A length >=1 vector of AE terms identifying COVID-19 (case does not matter) |
boolean value if check returns 0 obs, otherwise return subset dataframe.
Sarwan Singh
Other COVID:
check_ae_aeacnoth_ds_stddisc_covid()
,
check_dv_ae_aedecod_covid()
,
check_dv_covid()
AE <- data.frame( STUDYID = 1, USUBJID = c(1,2,3,1,2,3), AESTDTC = '2020-05-05', AETERM = c("abc Covid-19", "covid TEST POSITIVE",rep("other AE",4)), AEDECOD = c("COVID-19", "CORONAVIRUS POSITIVE", rep("OTHER AE",4)), AEACN = c("DRUG WITHDRAWN", rep("DOSE NOT CHANGED",5)), AESPID = "FORMNAME-R:13/L:13XXXX", stringsAsFactors = FALSE ) DS <- data.frame( USUBJID = c(1,1,2,3,4), DSSPID = 'XXX-DISCTX-XXX', DSCAT = "DISPOSITION EVENT", DSDECOD = "OTHER REASON", DSSEQ = c(1,2,1,1,1), stringsAsFactors = FALSE ) # expect fail check_ae_aeacn_ds_disctx_covid(AE, DS) AE2 <- data.frame( AEACN1 = rep(NA, nrow(AE)), AEACN2 = c("DRUG WITHDRAWN", rep("DOSE NOT CHANGED", nrow(AE)-1)), AEACN3 = c("DRUG WITHDRAWN", rep("DOSE NOT CHANGED", nrow(AE)-1)), AEACN4 = "", stringsAsFactors = FALSE ) AE2 <- cbind(AE, AE2) AE2$AEACN <- "MULTIPLE" # expect fail check_ae_aeacn_ds_disctx_covid(AE2, DS) DS[1, "DSDECOD"] <- 'ADVERSE EVENT' # this passes, one form with DSDECOD = "ADVERSE EVENT" ## NOTE: This may be a false negative if study-specific data collection ## requires >1 record with DSDECOD = "ADVERSE EVENT" and not just one record check_ae_aeacn_ds_disctx_covid(AE2, DS) # expect pass check_ae_aeacn_ds_disctx_covid(AE, DS) # non-required variable is missing DS$DSSEQ <- NULL check_ae_aeacn_ds_disctx_covid(AE, DS) # required variable is missing DS$DSSPID <- NULL check_ae_aeacn_ds_disctx_covid(AE, DS)
AE <- data.frame( STUDYID = 1, USUBJID = c(1,2,3,1,2,3), AESTDTC = '2020-05-05', AETERM = c("abc Covid-19", "covid TEST POSITIVE",rep("other AE",4)), AEDECOD = c("COVID-19", "CORONAVIRUS POSITIVE", rep("OTHER AE",4)), AEACN = c("DRUG WITHDRAWN", rep("DOSE NOT CHANGED",5)), AESPID = "FORMNAME-R:13/L:13XXXX", stringsAsFactors = FALSE ) DS <- data.frame( USUBJID = c(1,1,2,3,4), DSSPID = 'XXX-DISCTX-XXX', DSCAT = "DISPOSITION EVENT", DSDECOD = "OTHER REASON", DSSEQ = c(1,2,1,1,1), stringsAsFactors = FALSE ) # expect fail check_ae_aeacn_ds_disctx_covid(AE, DS) AE2 <- data.frame( AEACN1 = rep(NA, nrow(AE)), AEACN2 = c("DRUG WITHDRAWN", rep("DOSE NOT CHANGED", nrow(AE)-1)), AEACN3 = c("DRUG WITHDRAWN", rep("DOSE NOT CHANGED", nrow(AE)-1)), AEACN4 = "", stringsAsFactors = FALSE ) AE2 <- cbind(AE, AE2) AE2$AEACN <- "MULTIPLE" # expect fail check_ae_aeacn_ds_disctx_covid(AE2, DS) DS[1, "DSDECOD"] <- 'ADVERSE EVENT' # this passes, one form with DSDECOD = "ADVERSE EVENT" ## NOTE: This may be a false negative if study-specific data collection ## requires >1 record with DSDECOD = "ADVERSE EVENT" and not just one record check_ae_aeacn_ds_disctx_covid(AE2, DS) # expect pass check_ae_aeacn_ds_disctx_covid(AE, DS) # non-required variable is missing DS$DSSEQ <- NULL check_ae_aeacn_ds_disctx_covid(AE, DS) # required variable is missing DS$DSSPID <- NULL check_ae_aeacn_ds_disctx_covid(AE, DS)
Flag if patient has a record with null values of AEACNOT1 and AEACNOT2 but AEACNOTH = 'MULTIPLE', so a likely mapping issue
check_ae_aeacnoth(AE, preproc = identity, ...)
check_ae_aeacnoth(AE, preproc = identity, ...)
AE |
Adverse Events SDTM dataset with variables USUBJID, AETERM, AESTDTC, AEACNOTH, AEACNOT1/2, AESPID (optional) |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
boolean value if check failed or passed with 'msg' attribute if the test failed
Ross Farrugia
AE <- data.frame( USUBJID = 1:7, AETERM = 1:7, AESTDTC = 1:7, AEACNOTH = 1:7, AEACNOT1 = 1:7, AEACNOT2 = 1:7, AESPID = "FORMNAME-R:13/L:13XXXX" ) # pass check_ae_aeacnoth(AE) AE$AEACNOTH[1] = "" AE$AEACNOT1[1] = "" AE$AEACNOT2[1] = "" AE$AEACNOTH[2] = "MULTIPLE" AE$AEACNOT1[2] = "DOSE REDUCED" AE$AEACNOT2[2] = "DRUG WITHDRAWN" AE$AEACNOTH[3] = "MULTIPLE" AE$AEACNOT1[3] = "DOSE REDUCED" AE$AEACNOT2[3] = "" AE$AEACNOTH[4] = "MULTIPLE" AE$AEACNOT1[4] = "" AE$AEACNOT2[4] = "DRUG WITHDRAWN" AE$AEACNOTH[5] = "MULTIPLE" AE$AEACNOT1[5] = "" AE$AEACNOT2[5] = "" # fail check_ae_aeacnoth(AE) check_ae_aeacnoth(AE,preproc=roche_derive_rave_row) AE$AEACNOTH[1] = NA AE$AEACNOT1[1] = NA AE$AEACNOT2[1] = NA AE$AEACNOT2[3] = NA AE$AEACNOT1[4] = NA AE$AEACNOT1[5] = NA AE$AEACNOT2[5] = NA # fail check_ae_aeacnoth(AE) check_ae_aeacnoth(AE,preproc=roche_derive_rave_row) AE$AEACNOTH <- NULL AE$AEACNOT1 <- NULL AE$AEACNOT2 <- NULL AE$AESPID <- NULL check_ae_aeacnoth(AE)
AE <- data.frame( USUBJID = 1:7, AETERM = 1:7, AESTDTC = 1:7, AEACNOTH = 1:7, AEACNOT1 = 1:7, AEACNOT2 = 1:7, AESPID = "FORMNAME-R:13/L:13XXXX" ) # pass check_ae_aeacnoth(AE) AE$AEACNOTH[1] = "" AE$AEACNOT1[1] = "" AE$AEACNOT2[1] = "" AE$AEACNOTH[2] = "MULTIPLE" AE$AEACNOT1[2] = "DOSE REDUCED" AE$AEACNOT2[2] = "DRUG WITHDRAWN" AE$AEACNOTH[3] = "MULTIPLE" AE$AEACNOT1[3] = "DOSE REDUCED" AE$AEACNOT2[3] = "" AE$AEACNOTH[4] = "MULTIPLE" AE$AEACNOT1[4] = "" AE$AEACNOT2[4] = "DRUG WITHDRAWN" AE$AEACNOTH[5] = "MULTIPLE" AE$AEACNOT1[5] = "" AE$AEACNOT2[5] = "" # fail check_ae_aeacnoth(AE) check_ae_aeacnoth(AE,preproc=roche_derive_rave_row) AE$AEACNOTH[1] = NA AE$AEACNOT1[1] = NA AE$AEACNOT2[1] = NA AE$AEACNOT2[3] = NA AE$AEACNOT1[4] = NA AE$AEACNOT1[5] = NA AE$AEACNOT2[5] = NA # fail check_ae_aeacnoth(AE) check_ae_aeacnoth(AE,preproc=roche_derive_rave_row) AE$AEACNOTH <- NULL AE$AEACNOT1 <- NULL AE$AEACNOT2 <- NULL AE$AESPID <- NULL check_ae_aeacnoth(AE)
This code checks that when a patient has an AE with AEACNOTx = "SUBJECT DISCONTINUED FROM STUDY" (x = "H", "1", "2", ...) then there should also be a record in DS where DS.DSSCAT = "STUDY COMPLETION/EARLY DISCONTINUATION" and DS.DSDECOD != "COMPLETED".
check_ae_aeacnoth_ds_disctx(AE, DS, preproc = identity, ...)
check_ae_aeacnoth_ds_disctx(AE, DS, preproc = identity, ...)
AE |
Adverse Events SDTM dataset with variables USUBJID, AEDECOD, AEACNOTx |
DS |
Disposition SDTM dataset with variables USUBJID, DSCAT, DSSCAT, DSDECOD |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
boolean value if check returns 0 obs, otherwise return subset dataframe.
Edoardo Mancini
AE <- data.frame( STUDYID = "1001", USUBJID = c("1","2","3","4","5","1"), AESTDTC = rep('2020-05-05', 6), AEDECOD = c("HEADACHE", "HEART ATTACK","CHILLS", "PNEUMONIA", "ARTHRITIS", "FATIGUE"), AEACNOTH = c("NONE", "SUBJECT DISCONTINUED FROM STUDY", "MULTIPLE", "NONE", "SUBJECT DISCONTINUED FROM STUDY", "SUBJECT DISCONTINUED FROM STUDY"), AEACNOT1 = c("", "", "PROCEDURE/SURGERY", "", "", ""), AEACNOT2 = c("", "", "SUBJECT DISCONTINUED FROM STUDY", "", "", ""), AESPID = "FORMNAME-R:13/L:13XXXX", stringsAsFactors = FALSE ) DS <- data.frame( USUBJID = c("1","5"), DSCAT = c("DISPOSITION EVENT", "DISPOSITION EVENT"), DSSCAT = c("STUDY COMPLETION/EARLY DISCONTINUATION", "STUDY COMPLETION/EARLY DISCONTINUATION"), DSDECOD = c("ADVERSE EVENT", "ADVERSE EVENT" ), stringsAsFactors = FALSE ) check_ae_aeacnoth_ds_disctx(AE, DS) check_ae_aeacnoth_ds_disctx(AE, DS, preproc=roche_derive_rave_row)
AE <- data.frame( STUDYID = "1001", USUBJID = c("1","2","3","4","5","1"), AESTDTC = rep('2020-05-05', 6), AEDECOD = c("HEADACHE", "HEART ATTACK","CHILLS", "PNEUMONIA", "ARTHRITIS", "FATIGUE"), AEACNOTH = c("NONE", "SUBJECT DISCONTINUED FROM STUDY", "MULTIPLE", "NONE", "SUBJECT DISCONTINUED FROM STUDY", "SUBJECT DISCONTINUED FROM STUDY"), AEACNOT1 = c("", "", "PROCEDURE/SURGERY", "", "", ""), AEACNOT2 = c("", "", "SUBJECT DISCONTINUED FROM STUDY", "", "", ""), AESPID = "FORMNAME-R:13/L:13XXXX", stringsAsFactors = FALSE ) DS <- data.frame( USUBJID = c("1","5"), DSCAT = c("DISPOSITION EVENT", "DISPOSITION EVENT"), DSSCAT = c("STUDY COMPLETION/EARLY DISCONTINUATION", "STUDY COMPLETION/EARLY DISCONTINUATION"), DSDECOD = c("ADVERSE EVENT", "ADVERSE EVENT" ), stringsAsFactors = FALSE ) check_ae_aeacnoth_ds_disctx(AE, DS) check_ae_aeacnoth_ds_disctx(AE, DS, preproc=roche_derive_rave_row)
Flag if patient has a COVID-19 AE where AE.AEDECOD matches a COVID-19 preferred term event action of Study Discontinuation (AE.AEACNOT* includes "DISCONTINUED FROM STUDY") but missing Study Discontinuation record in DS (DS.DSSCAT includes "STUDY" and "DISCON" and excludes "DRUG" and "TREATMENT")
check_ae_aeacnoth_ds_stddisc_covid( AE, DS, covid_terms = c("COVID-19", "CORONAVIRUS POSITIVE") )
check_ae_aeacnoth_ds_stddisc_covid( AE, DS, covid_terms = c("COVID-19", "CORONAVIRUS POSITIVE") )
AE |
Adverse Events SDTM dataset with variables USUBJID, AEDECOD, AEACNOT* (can be multiple variables) |
DS |
Disposition SDTM dataset with variables USUBJID, DSSCAT, DSDECOD |
covid_terms |
A length >=1 vector of AE terms identifying COVID-19 (case does not matter) |
boolean value if check failed or passed with 'msg' attribute if the test failed
Natalie Springfield
Other COVID:
check_ae_aeacn_ds_disctx_covid()
,
check_dv_ae_aedecod_covid()
,
check_dv_covid()
AE <- data.frame( USUBJID = 1:5, AEDECOD = c("This is a covid AE", "covid-19", "covid-19","Some AE", "CORONAVIRUS POSITIVE" ), AEACNOTH=c("SUBJECT DISCONTINUED FROM STUDY", "NONE", "NONE", "SUBJECT DISCONTINUED FROM STUDY", "NONE"), AEACNOTH1=c("SUBJECT DISCONTINUED FROM STUDY", "NONE", "SUBJECT DISCONTINUED FROM STUDY", "NONE", "SUBJECT DISCONTINUED FROM STUDY"), AEACNOTH2=c("SUBJECT DISCONTINUED FROM STUDY", "NONE", "NONE", "SUBJECT DISCONTINUED FROM STUDY", "NONE") ) DS <- data.frame( USUBJID = 1:3, DSSCAT=c("TREATMENT DISCONTINUATION", "STUDY DISCONTINUATION", "STUDY DISCONTINUATION"), DSDECOD="DISCON REASON" ) #expect fail check_ae_aeacnoth_ds_stddisc_covid(AE,DS) #use custom terms for identifying covid AEs check_ae_aeacnoth_ds_stddisc_covid( AE, DS, covid_terms=c("COVID-19", "CORONAVIRUS POSITIVE","THIS IS A COVID AE") )
AE <- data.frame( USUBJID = 1:5, AEDECOD = c("This is a covid AE", "covid-19", "covid-19","Some AE", "CORONAVIRUS POSITIVE" ), AEACNOTH=c("SUBJECT DISCONTINUED FROM STUDY", "NONE", "NONE", "SUBJECT DISCONTINUED FROM STUDY", "NONE"), AEACNOTH1=c("SUBJECT DISCONTINUED FROM STUDY", "NONE", "SUBJECT DISCONTINUED FROM STUDY", "NONE", "SUBJECT DISCONTINUED FROM STUDY"), AEACNOTH2=c("SUBJECT DISCONTINUED FROM STUDY", "NONE", "NONE", "SUBJECT DISCONTINUED FROM STUDY", "NONE") ) DS <- data.frame( USUBJID = 1:3, DSSCAT=c("TREATMENT DISCONTINUATION", "STUDY DISCONTINUATION", "STUDY DISCONTINUATION"), DSDECOD="DISCON REASON" ) #expect fail check_ae_aeacnoth_ds_stddisc_covid(AE,DS) #use custom terms for identifying covid AEs check_ae_aeacnoth_ds_stddisc_covid( AE, DS, covid_terms=c("COVID-19", "CORONAVIRUS POSITIVE","THIS IS A COVID AE") )
This check looks for missing AEDECOD values
check_ae_aedecod(AE, preproc = identity, ...)
check_ae_aedecod(AE, preproc = identity, ...)
AE |
Adverse Events SDTM dataset with variables USUBJID, AETERM, AEDECOD |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
boolean value if check failed or passed with 'msg' attribute if the test failed
Yinghui Miao, Stella Banjo(HackR 2021)
AE <- data.frame( USUBJID = 1:5, DOMAIN = c(rep("AE", 5)), AESEQ = 1:5, AESTDTC = 1:5, AETERM = 1:5, AEDECOD = 1:5, AESPID = c("FORMNAME-R:13/L:13XXXX", "FORMNAME-R:16/L:16XXXX", "FORMNAME-R:2/L:2XXXX", "FORMNAME-R:19/L:19XXXX", "FORMNAME-R:5/L:5XXXX"), stringsAsFactors = FALSE ) check_ae_aedecod(AE) AE$AEDECOD[1] = NA AE$AEDECOD[2] = "NA" AE$AEDECOD[3:5] = "" check_ae_aedecod(AE) check_ae_aedecod(AE,preproc=roche_derive_rave_row) AE$AEDECOD <- NULL check_ae_aedecod(AE)
AE <- data.frame( USUBJID = 1:5, DOMAIN = c(rep("AE", 5)), AESEQ = 1:5, AESTDTC = 1:5, AETERM = 1:5, AEDECOD = 1:5, AESPID = c("FORMNAME-R:13/L:13XXXX", "FORMNAME-R:16/L:16XXXX", "FORMNAME-R:2/L:2XXXX", "FORMNAME-R:19/L:19XXXX", "FORMNAME-R:5/L:5XXXX"), stringsAsFactors = FALSE ) check_ae_aedecod(AE) AE$AEDECOD[1] = NA AE$AEDECOD[2] = "NA" AE$AEDECOD[3:5] = "" check_ae_aedecod(AE) check_ae_aedecod(AE,preproc=roche_derive_rave_row) AE$AEDECOD <- NULL check_ae_aedecod(AE)
This check looks for AE entries with an AEDTHDTC (death date) value and AESDTH not equal to "Y"
check_ae_aedthdtc_aesdth(AE, preproc = identity, ...)
check_ae_aedthdtc_aesdth(AE, preproc = identity, ...)
AE |
Adverse Event SDTM dataset with variables USUBJID, AEDTHDTC, AESDTH, AEDECOD, AETERM, and AESTDTC |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
Boolean value for whether the check passed or failed, with 'msg' attribute if the check failed
Shumei Chi
AE <- data.frame( USUBJID = c(1:7), AEDECOD = c(letters[1:5], "", NA), AETERM = letters[1:7], AESDTH = "Y", AEDTHDTC = "2020-01-02", AESTDTC = c(1:7), AESPID = "FORMNAME-R:5/L:5XXXX", stringsAsFactors=FALSE) # expect pass check_ae_aedthdtc_aesdth(AE) check_ae_aedthdtc_aesdth(AE,preproc=roche_derive_rave_row) # expect fail AE1 <- AE AE1$AESDTH[3] <- "N" check_ae_aedthdtc_aesdth(AE1) check_ae_aedthdtc_aesdth(AE1,preproc=roche_derive_rave_row) # expect fail with AESDTH = NA AE2 <- AE AE2$AESDTH[4] <- NA check_ae_aedthdtc_aesdth(AE2) check_ae_aedthdtc_aesdth(AE2,preproc=roche_derive_rave_row) # non-required variable missing AE2$AESPID <- NULL check_ae_aedthdtc_aesdth(AE2) check_ae_aedthdtc_aesdth(AE2,preproc=roche_derive_rave_row) # required variable missing AE2$AESDTH <- NULL check_ae_aedthdtc_aesdth(AE2) check_ae_aedthdtc_aesdth(AE2,preproc=roche_derive_rave_row)
AE <- data.frame( USUBJID = c(1:7), AEDECOD = c(letters[1:5], "", NA), AETERM = letters[1:7], AESDTH = "Y", AEDTHDTC = "2020-01-02", AESTDTC = c(1:7), AESPID = "FORMNAME-R:5/L:5XXXX", stringsAsFactors=FALSE) # expect pass check_ae_aedthdtc_aesdth(AE) check_ae_aedthdtc_aesdth(AE,preproc=roche_derive_rave_row) # expect fail AE1 <- AE AE1$AESDTH[3] <- "N" check_ae_aedthdtc_aesdth(AE1) check_ae_aedthdtc_aesdth(AE1,preproc=roche_derive_rave_row) # expect fail with AESDTH = NA AE2 <- AE AE2$AESDTH[4] <- NA check_ae_aedthdtc_aesdth(AE2) check_ae_aedthdtc_aesdth(AE2,preproc=roche_derive_rave_row) # non-required variable missing AE2$AESPID <- NULL check_ae_aedthdtc_aesdth(AE2) check_ae_aedthdtc_aesdth(AE2,preproc=roche_derive_rave_row) # required variable missing AE2$AESDTH <- NULL check_ae_aedthdtc_aesdth(AE2) check_ae_aedthdtc_aesdth(AE2,preproc=roche_derive_rave_row)
This check looks for missing AEDTHDTC values if a patient has a DS record where DSDECOD=DEATH and DSTERM contains ADVERSE EVENT
check_ae_aedthdtc_ds_death(AE, DS)
check_ae_aedthdtc_ds_death(AE, DS)
AE |
Adverse Events SDTM dataset with variables USUBJID, AEDTHDTC |
DS |
Disposition SDTM dataset with variables USUBJID, DSDECOD, DSTERM, DSSTDTC |
boolean value if check failed or passed with 'msg' attribute if the test failed
Aldrich Salva
AE <- data.frame( USUBJID = 1:3, AEDTHDTC = c(NA,NA,1) ) # older mapping DS <- data.frame( USUBJID = 1:4, DSTERM = c("DEATH DUE TO ADVERSE EVENT","DEATH DUE TO PROGRESSIVE DISEASE", "DEATH DUE TO ADVERSE EVENT","DEATH DUE TO ADVERSE EVENT") , DSDECOD = rep("DEATH",4), DSSTDTC = "2020-01-01" ) check_ae_aedthdtc_ds_death(AE,DS) DS$DSSTDTC = NULL check_ae_aedthdtc_ds_death(AE,DS) # newer mapping that DS <- data.frame( USUBJID = 1:4, DSTERM = c("DEATH DUE TO MYOCARDIAL INFARCTION","DEATH DUE TO PROGRESSIVE DISEASE", "DEATH DUE TO COVID-19","DEATH") , DSDECOD = rep("DEATH",4), DSSTDTC = "2020-01-01" ) # pass for study with newer mapping, as another function (check_dd_death_date.R) covers this check_ae_aedthdtc_ds_death(AE,DS)
AE <- data.frame( USUBJID = 1:3, AEDTHDTC = c(NA,NA,1) ) # older mapping DS <- data.frame( USUBJID = 1:4, DSTERM = c("DEATH DUE TO ADVERSE EVENT","DEATH DUE TO PROGRESSIVE DISEASE", "DEATH DUE TO ADVERSE EVENT","DEATH DUE TO ADVERSE EVENT") , DSDECOD = rep("DEATH",4), DSSTDTC = "2020-01-01" ) check_ae_aedthdtc_ds_death(AE,DS) DS$DSSTDTC = NULL check_ae_aedthdtc_ds_death(AE,DS) # newer mapping that DS <- data.frame( USUBJID = 1:4, DSTERM = c("DEATH DUE TO MYOCARDIAL INFARCTION","DEATH DUE TO PROGRESSIVE DISEASE", "DEATH DUE TO COVID-19","DEATH") , DSDECOD = rep("DEATH",4), DSSTDTC = "2020-01-01" ) # pass for study with newer mapping, as another function (check_dd_death_date.R) covers this check_ae_aedthdtc_ds_death(AE,DS)
This check looks if AESOC has Eye, and AELAT is missing.
check_ae_aelat(AE, preproc = identity, ...)
check_ae_aelat(AE, preproc = identity, ...)
AE |
Adverse Event Dataset for Ophtho Study with variables USUBJID, AELAT, AESOC, AEDECOD, AETERM, AESTDTC (if present), AESPID (if present) |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
boolean value if check failed or passed with 'msg' attribute if the test failed
Monarch Shah (HackR 2021 Team Eye)
Other OPHTH:
check_cm_cmlat()
,
check_cm_cmlat_prior_ocular()
,
check_oe_bcva_1m_late_early_tot()
,
check_oe_bcva_4m_late_early_tot()
,
check_oe_bcva_4m_vs_1m_req()
,
check_oe_bcva_tot_mismatch()
,
check_oe_sc_lat_count_fingers()
,
check_pr_prlat()
,
check_sc_dm_eligcrit()
,
check_sc_dm_seyeselc()
AE <- data.frame( USUBJID = 1:5, AESTDTC = 1:5, AELOC = c("", "EYE", "eye", "", "EYE"), AELAT = c("Left", "","left", "RIGHT", ""), AETERM = c("A", "B", "A", "B", "A"), AEDECOD = c("A", "B", "A", "B", "A"), AESOC = c("Eye", "Eye","Eye Disorder","Eye Disorder", "Eye"), AESPID = "FORMNAME-R:19/L:19XXXX", stringsAsFactors = FALSE) check_ae_aelat(AE) check_ae_aelat(AE,preproc=roche_derive_rave_row) AE <- data.frame( USUBJID = 1:5, AESTDTC = 1:5, AELAT = c("Left", "","Bilateral", "", ""), AETERM = c("A", "B", "A", "B", "A"), AEDECOD = c("A", "B", "A", "B", "A"), AESOC = c("Eye", "Eye","Eye Disorder","Eye Disorder", "Eye"), stringsAsFactors = FALSE) check_ae_aelat(AE) check_ae_aelat(AE,preproc=roche_derive_rave_row)
AE <- data.frame( USUBJID = 1:5, AESTDTC = 1:5, AELOC = c("", "EYE", "eye", "", "EYE"), AELAT = c("Left", "","left", "RIGHT", ""), AETERM = c("A", "B", "A", "B", "A"), AEDECOD = c("A", "B", "A", "B", "A"), AESOC = c("Eye", "Eye","Eye Disorder","Eye Disorder", "Eye"), AESPID = "FORMNAME-R:19/L:19XXXX", stringsAsFactors = FALSE) check_ae_aelat(AE) check_ae_aelat(AE,preproc=roche_derive_rave_row) AE <- data.frame( USUBJID = 1:5, AESTDTC = 1:5, AELAT = c("Left", "","Bilateral", "", ""), AETERM = c("A", "B", "A", "B", "A"), AEDECOD = c("A", "B", "A", "B", "A"), AESOC = c("Eye", "Eye","Eye Disorder","Eye Disorder", "Eye"), stringsAsFactors = FALSE) check_ae_aelat(AE) check_ae_aelat(AE,preproc=roche_derive_rave_row)
This check looks for AEs with Death date(AEDTHDTC) but outcome (AEOUT) is not FATAL and conversely AEs with no death date (AEDTHDTC) but outcome (AEOUT) is fatal
check_ae_aeout(AE, preproc = identity, ...)
check_ae_aeout(AE, preproc = identity, ...)
AE |
Adverse Events SDTM dataset with variables USUBJID, AEDTHDTC, AEOUT |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
boolean value if check failed or passed with 'msg' attribute if the test failed
Shumei Chi
AE <- data.frame( USUBJID = 1:8, AEDTHDTC = c(NA, "NA", "2015-03-12", "2017-01-22", "1999-11-07","",NA, "2020-01-01"), AEOUT = c("", "", "","FATAL","RECOVERED/RESOLVED","FATAL","FATAL", NA), AESPID = "FORMNAME-R:13/L:13XXXX", stringsAsFactors = FALSE ) check_ae_aeout(AE) check_ae_aeout(AE,preproc=roche_derive_rave_row) AE$AEDTHDTC <- NULL check_ae_aeout(AE) AE$AEOUT <- NULL check_ae_aeout(AE)
AE <- data.frame( USUBJID = 1:8, AEDTHDTC = c(NA, "NA", "2015-03-12", "2017-01-22", "1999-11-07","",NA, "2020-01-01"), AEOUT = c("", "", "","FATAL","RECOVERED/RESOLVED","FATAL","FATAL", NA), AESPID = "FORMNAME-R:13/L:13XXXX", stringsAsFactors = FALSE ) check_ae_aeout(AE) check_ae_aeout(AE,preproc=roche_derive_rave_row) AE$AEDTHDTC <- NULL check_ae_aeout(AE) AE$AEOUT <- NULL check_ae_aeout(AE)
This check looks for AEs with outcome of 'FATAL' but AE resolution date is not equal to AE death date. Note that these datapoints are not collected the same way for all trials - some trials leave AEENDTC missing if it was unresolved at death date. Confirm within your team before querying this issue.
check_ae_aeout_aeendtc_aedthdtc(AE, preproc = identity, ...)
check_ae_aeout_aeendtc_aedthdtc(AE, preproc = identity, ...)
AE |
Adverse Events SDTM dataset with variables USUBJID, AETERM, AEDTHDTC, AEENDTC, AEOUT |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
boolean value if check failed or passed with 'msg' attribute if the test failed
Sara Bodach, Stella Banjo(HackR 2021)
AE <- data.frame( USUBJID = 1:10, DOMAIN = "AE", AEDTHDTC = c(NA, "NA", rep("2015-03-12",4), NA, NA, "2020-01-01", ""), AEENDTC = c(NA, "NA", rep("2015-03-12",4), NA, "2020-01-01", NA, ""), AEOUT = c("", "", "","FATAL","RECOVERED/RESOLVED", rep("FATAL",5)), AETERM = 1:10, AESPID = "FORMNAME-R:13/L:13XXXX", stringsAsFactors = FALSE ) check_ae_aeout_aeendtc_aedthdtc(AE) check_ae_aeout_aeendtc_aedthdtc(AE,preproc=roche_derive_rave_row) AE$AESPID <- NULL check_ae_aeout_aeendtc_aedthdtc(AE) AE$AEDTHDTC <- NULL AE$AEOUT <- NULL check_ae_aeout_aeendtc_aedthdtc(AE)
AE <- data.frame( USUBJID = 1:10, DOMAIN = "AE", AEDTHDTC = c(NA, "NA", rep("2015-03-12",4), NA, NA, "2020-01-01", ""), AEENDTC = c(NA, "NA", rep("2015-03-12",4), NA, "2020-01-01", NA, ""), AEOUT = c("", "", "","FATAL","RECOVERED/RESOLVED", rep("FATAL",5)), AETERM = 1:10, AESPID = "FORMNAME-R:13/L:13XXXX", stringsAsFactors = FALSE ) check_ae_aeout_aeendtc_aedthdtc(AE) check_ae_aeout_aeendtc_aedthdtc(AE,preproc=roche_derive_rave_row) AE$AESPID <- NULL check_ae_aeout_aeendtc_aedthdtc(AE) AE$AEDTHDTC <- NULL AE$AEOUT <- NULL check_ae_aeout_aeendtc_aedthdtc(AE)
Check for inconsistency between AE outcome (AEOUT) and AE end date (AEENDTC) for non-fatal AEs (based on AEOUT). AE flagged if AEENDTC not populated when AEOUT is "RECOVERED/RESOLVED", "RECOVERED/RESOLVED WITH SEQUELAE". AE also flagged if AEENDTC is populated when AEOUT is "UNKNOWN", "NOT RECOVERED/NOT RESOLVED", "RECOVERING/RESOLVING".
check_ae_aeout_aeendtc_nonfatal(AE, preproc = identity, ...)
check_ae_aeout_aeendtc_nonfatal(AE, preproc = identity, ...)
AE |
Adverse Events SDTM dataset with variables USUBJID, AETERM, AESTDTC, AEENDTC, AEOUT |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
boolean value if check failed or passed with 'msg' attribute if the test failed
Jennifer Lomax
AE <- data.frame( USUBJID = 1:10, AETERM = "AE", AESTDTC = c(NA, "NA", "2015-03-09", "2010-10", "2017-01-20", "1999-11-02", "", NA, "2017-08-20", "2014-12-01"), AEENDTC = c(NA, "NA", "2015-03-12", "2010-10", "2017-01-22", "1999-11-07", "", NA, "2017-09-01", "2015-01-01"), AEOUT = c("", "", "", "", "NOT RECOVERED", "RECOVERED/RESOLVED","FATAL","RECOVERED/RESOLVED", "RECOVERING/RESOLVING","UNKNOWN"), AESPID = "FORMNAME-R:13/L:13XXXX", stringsAsFactors = FALSE ) check_ae_aeout_aeendtc_nonfatal(AE) check_ae_aeout_aeendtc_nonfatal(AE,preproc=roche_derive_rave_row) AE$AEENDTC <- NULL check_ae_aeout_aeendtc_nonfatal(AE) AE$AEOUT <- NULL check_ae_aeout_aeendtc_nonfatal(AE)
AE <- data.frame( USUBJID = 1:10, AETERM = "AE", AESTDTC = c(NA, "NA", "2015-03-09", "2010-10", "2017-01-20", "1999-11-02", "", NA, "2017-08-20", "2014-12-01"), AEENDTC = c(NA, "NA", "2015-03-12", "2010-10", "2017-01-22", "1999-11-07", "", NA, "2017-09-01", "2015-01-01"), AEOUT = c("", "", "", "", "NOT RECOVERED", "RECOVERED/RESOLVED","FATAL","RECOVERED/RESOLVED", "RECOVERING/RESOLVING","UNKNOWN"), AESPID = "FORMNAME-R:13/L:13XXXX", stringsAsFactors = FALSE ) check_ae_aeout_aeendtc_nonfatal(AE) check_ae_aeout_aeendtc_nonfatal(AE,preproc=roche_derive_rave_row) AE$AEENDTC <- NULL check_ae_aeout_aeendtc_nonfatal(AE) AE$AEOUT <- NULL check_ae_aeout_aeendtc_nonfatal(AE)
Flag if patient has a record with null value of AEREL but AEREL1 - AERELN contain 'Y'/'N'/'NA', so a likely mapping issue or if AEREL is missing and there is no any AERELn variable or if AEREL has unexpected value
check_ae_aerel(AE, preproc = identity, ...)
check_ae_aerel(AE, preproc = identity, ...)
AE |
Adverse Events SDTM dataset with variables USUBJID, AESEQ, AETERM, AESTDTC, AEREL, AERELn, AESPID (if present) |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
boolean value if check failed or passed with 'msg' attribute if the test failed
Vira Vrakina
AE <- data.frame( STUDYID = 1001, USUBJID = c(1,2,3,1,2,3), AESTDTC = rep('2020-05-05',6), AETERM = c("abc Covid-19", "covid TEST POSITIVE","CHILLS"), AESEQ = c(1,1,1,2,2,2), AEREL = c("Y", "N", "NA", "N", "N", "Y"), AEREL1 = c("Y", "N", "NA", "N", "NA", "Y"), AEREL2 = c("Y", "N", "NA", "N", "N", "N"), AESPID = "FORMNAME-R:13/L:13XXXX", stringsAsFactors = FALSE ) check_ae_aerel(AE) AE1 <- data.frame( STUDYID = 1001, USUBJID = c(1,2,3,1,2,3), AESTDTC = rep('2020-05-05',6), AETERM = c("abc Covid-19", "covid TEST POSITIVE","CHILLS"), AESEQ = c(1,1,1,2,2,2), AEREL = c("Y", "N", "N", "N", "N", "N"), AEREL1 = c("Y", "N", "NA", "N", "N", ""), AEREL2 = c("Y", "N", " ", "N", "N", " "), AESPID = "FORMNAME-R:13/L:13XXXX", stringsAsFactors = FALSE ) check_ae_aerel(AE1) check_ae_aerel(AE1,preproc=roche_derive_rave_row) AE2 <- data.frame( STUDYID = 1001, USUBJID = c(1,2,3,1,2,3), AESTDTC = rep('2020-05-05',6), AETERM = c("abc Covid-19", "covid TEST POSITIVE","CHILLS"), AESEQ = c(1,1,1,2,2,2), AEREL = c("Y", "N", " ", "N", "N", " "), AEREL1 = c("NA", "N", "NA", "Y", "N", " "), AEREL2 = c("Y", "N", " ", "N", "N", " "), AESPID = "FORMNAME-R:13/L:13XXXX", stringsAsFactors = FALSE ) check_ae_aerel(AE2) check_ae_aerel(AE2,preproc=roche_derive_rave_row) AE3 <- data.frame( STUDYID = 1001, USUBJID = c(1,2,3,1,2,3), AESTDTC = rep('2020-05-05',6), AETERM = c("abc Covid-19", "covid TEST POSITIVE","CHILLS"), AESEQ = c(1,1,1,2,2,2), AEREL = c("Y", " ", " ", "N", " ", "NA"), AESPID = "FORMNAME-R:13/L:13XXXX", stringsAsFactors = FALSE ) check_ae_aerel(AE3) check_ae_aerel(AE3,preproc=roche_derive_rave_row) AE4 <- data.frame( STUDYID = 1001, USUBJID = c(1,2,3,4,5,6), AESTDTC = rep('2020-05-05',6), AETERM = c("abc Covid-19", "covid TEST POSITIVE","CHILLS"), AESEQ = c(1,2,3,4,5,6), AEREL = c("Y", "Y", "N", "", "Y", "NA"), AEREL1 = "", AEREL2 = "", AESPID = "FORMNAME-R:13/L:13XXXX", stringsAsFactors = FALSE ) check_ae_aerel(AE4) check_ae_aerel(AE4,preproc=roche_derive_rave_row)
AE <- data.frame( STUDYID = 1001, USUBJID = c(1,2,3,1,2,3), AESTDTC = rep('2020-05-05',6), AETERM = c("abc Covid-19", "covid TEST POSITIVE","CHILLS"), AESEQ = c(1,1,1,2,2,2), AEREL = c("Y", "N", "NA", "N", "N", "Y"), AEREL1 = c("Y", "N", "NA", "N", "NA", "Y"), AEREL2 = c("Y", "N", "NA", "N", "N", "N"), AESPID = "FORMNAME-R:13/L:13XXXX", stringsAsFactors = FALSE ) check_ae_aerel(AE) AE1 <- data.frame( STUDYID = 1001, USUBJID = c(1,2,3,1,2,3), AESTDTC = rep('2020-05-05',6), AETERM = c("abc Covid-19", "covid TEST POSITIVE","CHILLS"), AESEQ = c(1,1,1,2,2,2), AEREL = c("Y", "N", "N", "N", "N", "N"), AEREL1 = c("Y", "N", "NA", "N", "N", ""), AEREL2 = c("Y", "N", " ", "N", "N", " "), AESPID = "FORMNAME-R:13/L:13XXXX", stringsAsFactors = FALSE ) check_ae_aerel(AE1) check_ae_aerel(AE1,preproc=roche_derive_rave_row) AE2 <- data.frame( STUDYID = 1001, USUBJID = c(1,2,3,1,2,3), AESTDTC = rep('2020-05-05',6), AETERM = c("abc Covid-19", "covid TEST POSITIVE","CHILLS"), AESEQ = c(1,1,1,2,2,2), AEREL = c("Y", "N", " ", "N", "N", " "), AEREL1 = c("NA", "N", "NA", "Y", "N", " "), AEREL2 = c("Y", "N", " ", "N", "N", " "), AESPID = "FORMNAME-R:13/L:13XXXX", stringsAsFactors = FALSE ) check_ae_aerel(AE2) check_ae_aerel(AE2,preproc=roche_derive_rave_row) AE3 <- data.frame( STUDYID = 1001, USUBJID = c(1,2,3,1,2,3), AESTDTC = rep('2020-05-05',6), AETERM = c("abc Covid-19", "covid TEST POSITIVE","CHILLS"), AESEQ = c(1,1,1,2,2,2), AEREL = c("Y", " ", " ", "N", " ", "NA"), AESPID = "FORMNAME-R:13/L:13XXXX", stringsAsFactors = FALSE ) check_ae_aerel(AE3) check_ae_aerel(AE3,preproc=roche_derive_rave_row) AE4 <- data.frame( STUDYID = 1001, USUBJID = c(1,2,3,4,5,6), AESTDTC = rep('2020-05-05',6), AETERM = c("abc Covid-19", "covid TEST POSITIVE","CHILLS"), AESEQ = c(1,2,3,4,5,6), AEREL = c("Y", "Y", "N", "", "Y", "NA"), AEREL1 = "", AEREL2 = "", AESPID = "FORMNAME-R:13/L:13XXXX", stringsAsFactors = FALSE ) check_ae_aerel(AE4) check_ae_aerel(AE4,preproc=roche_derive_rave_row)
This check looks for AE entries with AESDTH of "Y" but no AEDTHDTC (death date) value
check_ae_aesdth_aedthdtc(AE, preproc = identity, ...)
check_ae_aesdth_aedthdtc(AE, preproc = identity, ...)
AE |
Adverse Event SDTM dataset with variables USUBJID, AEDTHDTC, AESDTH, AETERM, AEDECOD and AESTDTC |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
Boolean value for whether the check passed or failed, with 'msg' attribute if the check failed
Shumei Chi
AE <- data.frame( USUBJID = c(1:7), AEDECOD = c(letters[1:5], "", NA), AETERM = letters[1:7], AESDTH = c(NA, rep("", 4), "Y", "Y"), AEDTHDTC = c(1:5, "2020", "2020-01-02"), AESTDTC = c(1:7), AESPID = "FORMNAME-R:5/L:5XXXX", stringsAsFactors=FALSE) # expect pass check_ae_aesdth_aedthdtc(AE) check_ae_aesdth_aedthdtc(AE,preproc=roche_derive_rave_row) # expect fail AE1 <- AE AE1$AEDTHDTC[3] <- NA AE1$AESDTH[3] <- "Y" check_ae_aesdth_aedthdtc(AE1) check_ae_aesdth_aedthdtc(AE1,preproc=roche_derive_rave_row) # expect fail AE2 <- AE1 AE2$AEDTHDTC[4] <- "" AE2$AESDTH[4] <- "Y" check_ae_aesdth_aedthdtc(AE2) check_ae_aesdth_aedthdtc(AE2,preproc=roche_derive_rave_row) # non-required variable missing AE2$AESPID <- NULL check_ae_aesdth_aedthdtc(AE2) check_ae_aesdth_aedthdtc(AE2,preproc=roche_derive_rave_row) # required variable missing AE2$AESDTH <- NULL check_ae_aesdth_aedthdtc(AE2) check_ae_aesdth_aedthdtc(AE2,preproc=roche_derive_rave_row)
AE <- data.frame( USUBJID = c(1:7), AEDECOD = c(letters[1:5], "", NA), AETERM = letters[1:7], AESDTH = c(NA, rep("", 4), "Y", "Y"), AEDTHDTC = c(1:5, "2020", "2020-01-02"), AESTDTC = c(1:7), AESPID = "FORMNAME-R:5/L:5XXXX", stringsAsFactors=FALSE) # expect pass check_ae_aesdth_aedthdtc(AE) check_ae_aesdth_aedthdtc(AE,preproc=roche_derive_rave_row) # expect fail AE1 <- AE AE1$AEDTHDTC[3] <- NA AE1$AESDTH[3] <- "Y" check_ae_aesdth_aedthdtc(AE1) check_ae_aesdth_aedthdtc(AE1,preproc=roche_derive_rave_row) # expect fail AE2 <- AE1 AE2$AEDTHDTC[4] <- "" AE2$AESDTH[4] <- "Y" check_ae_aesdth_aedthdtc(AE2) check_ae_aesdth_aedthdtc(AE2,preproc=roche_derive_rave_row) # non-required variable missing AE2$AESPID <- NULL check_ae_aesdth_aedthdtc(AE2) check_ae_aesdth_aedthdtc(AE2,preproc=roche_derive_rave_row) # required variable missing AE2$AESDTH <- NULL check_ae_aesdth_aedthdtc(AE2) check_ae_aesdth_aedthdtc(AE2,preproc=roche_derive_rave_row)
This check identifies AESTDTC values that are after AEENDTC values
check_ae_aestdtc_after_aeendtc(AE, preproc = identity, ...)
check_ae_aestdtc_after_aeendtc(AE, preproc = identity, ...)
AE |
Adverse Event SDTM dataset with variables USUBJID,AETERM,AEDECOD,AESTDTC,AEENDTC |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
boolean value if check failed or passed with 'msg' attribute if the test failed
Sara Bodach
AE <- data.frame( USUBJID = 1:12, AETERM = "SOME AE TERM", AEDECOD = "SOME AE PT", AESTDTC = c("2017-01-01","2017-01-03","2017-01-01T14:26","2017","2017-02","2017" ,"" , "2017" ,"2017-01-01T14:26","2017-01-01T14:26","2017-01-01T14","2017-01-01T14:26:02") , AEENDTC = c("2017-01-01","2017-01-02","2017-01-01T14:25","2015","2017-01","2016-01-01", "2000","2017-02","2017-01-01" ,"2017-01","2017-01-01T13","2017-01-01T14:26:01") , AESPID = "FORMNAME-R:19/L:19XXXX", stringsAsFactors=FALSE ) check_ae_aestdtc_after_aeendtc(AE) check_ae_aestdtc_after_aeendtc(AE,preproc=roche_derive_rave_row) AE$AETERM <- NULL check_ae_aestdtc_after_aeendtc(AE)
AE <- data.frame( USUBJID = 1:12, AETERM = "SOME AE TERM", AEDECOD = "SOME AE PT", AESTDTC = c("2017-01-01","2017-01-03","2017-01-01T14:26","2017","2017-02","2017" ,"" , "2017" ,"2017-01-01T14:26","2017-01-01T14:26","2017-01-01T14","2017-01-01T14:26:02") , AEENDTC = c("2017-01-01","2017-01-02","2017-01-01T14:25","2015","2017-01","2016-01-01", "2000","2017-02","2017-01-01" ,"2017-01","2017-01-01T13","2017-01-01T14:26:01") , AESPID = "FORMNAME-R:19/L:19XXXX", stringsAsFactors=FALSE ) check_ae_aestdtc_after_aeendtc(AE) check_ae_aestdtc_after_aeendtc(AE,preproc=roche_derive_rave_row) AE$AETERM <- NULL check_ae_aestdtc_after_aeendtc(AE)
This check looks for AE dates that occur after death date
check_ae_aestdtc_after_dd(AE, DS, preproc = identity, ...)
check_ae_aestdtc_after_dd(AE, DS, preproc = identity, ...)
AE |
Adverse Event SDTM dataset with variables USUBJID, AEDTHDTC, AESTDTC, AEDECOD, AETERM, AESPID (optional) |
DS |
Disposition SDTM dataset with variables USUBJID, DSSTDTC, DSDECOD, DSTERM, DSSPID (optional) |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
Boolean value for whether the check passed or failed, with 'msg' attribute if the check failed
Nina Ting Qi
AE <- data.frame(STUDYID = 1:5, USUBJID = LETTERS[1:5], AEDTHDTC = c(rep("", 4), "2016-01-01"), AESTDTC = rep("2016-01-01", 5), AEDECOD = c("","", rep("Myocarditis",3)), AETERM = c("INJURY", rep("MYOCARDITIS", 4)), AESPID = "FORMNAME-R:19/L:19XXXX", stringsAsFactors = FALSE) DS <- data.frame(STUDYID = 1:5, USUBJID = LETTERS[1:5], DSSTDTC = rep("2016-01-02", 5), DSDECOD = c(LETTERS[1:4], "death"), DSSPID = "XXX-R:0", DSTERM = letters[1:5], stringsAsFactors = FALSE) check_ae_aestdtc_after_dd(AE,DS) AE$AESTDTC[1] <- "2016-01-03" AE$USUBJID[1] <- AE$USUBJID[5] check_ae_aestdtc_after_dd(AE, DS,preproc=roche_derive_rave_row) AE$AESPID <- NULL check_ae_aestdtc_after_dd(AE, DS) DS$DSSPID <- NULL check_ae_aestdtc_after_dd(AE, DS) AE$AESTDTC <- NULL check_ae_aestdtc_after_dd(AE, DS)
AE <- data.frame(STUDYID = 1:5, USUBJID = LETTERS[1:5], AEDTHDTC = c(rep("", 4), "2016-01-01"), AESTDTC = rep("2016-01-01", 5), AEDECOD = c("","", rep("Myocarditis",3)), AETERM = c("INJURY", rep("MYOCARDITIS", 4)), AESPID = "FORMNAME-R:19/L:19XXXX", stringsAsFactors = FALSE) DS <- data.frame(STUDYID = 1:5, USUBJID = LETTERS[1:5], DSSTDTC = rep("2016-01-02", 5), DSDECOD = c(LETTERS[1:4], "death"), DSSPID = "XXX-R:0", DSTERM = letters[1:5], stringsAsFactors = FALSE) check_ae_aestdtc_after_dd(AE,DS) AE$AESTDTC[1] <- "2016-01-03" AE$USUBJID[1] <- AE$USUBJID[5] check_ae_aestdtc_after_dd(AE, DS,preproc=roche_derive_rave_row) AE$AESPID <- NULL check_ae_aestdtc_after_dd(AE, DS) DS$DSSPID <- NULL check_ae_aestdtc_after_dd(AE, DS) AE$AESTDTC <- NULL check_ae_aestdtc_after_dd(AE, DS)
This check looks for missing AETOXGR and/or AESEV values and returns a data frame. If both variables exist it returns records where both are missing.
check_ae_aetoxgr(AE, preproc = identity, ...)
check_ae_aetoxgr(AE, preproc = identity, ...)
AE |
Adverse Events SDTM dataset with variables USUBJID, AESTDTC, AEDECOD, AETERM, and AETOXGR (or AESEV) |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
boolean value if check failed or passed with 'msg' attribute if the test failed
Will Harris, Stella Banjo (HackR 2021)
# test with sample data AE <- data.frame( USUBJID = 1:3, DOMAIN = c(rep("AE", 3)), AESEQ = 1:3, AESTDTC = 1:3, AETERM = c("FLU COUGH", "HEADACHE", "FEVER"), AEDECOD = c("", "Headache", "Fever"), AETOXGR = 1:3, AESEV = 1:3, AESPID = "FORMNAME-R:16/L:16XXXX", stringsAsFactors = FALSE ) check_ae_aetoxgr(AE) AE$AETOXGR[1] <- NA check_ae_aetoxgr(AE) AE$AESEV[1] <- NA check_ae_aetoxgr(AE,preproc=roche_derive_rave_row) AE$AETOXGR <- NULL check_ae_aetoxgr(AE,preproc=roche_derive_rave_row) AE$AESPID <- NULL check_ae_aetoxgr(AE,preproc=roche_derive_rave_row) AE$AESEV <- NULL check_ae_aetoxgr(AE) AE$AEDECOD <- NULL check_ae_aetoxgr(AE)
# test with sample data AE <- data.frame( USUBJID = 1:3, DOMAIN = c(rep("AE", 3)), AESEQ = 1:3, AESTDTC = 1:3, AETERM = c("FLU COUGH", "HEADACHE", "FEVER"), AEDECOD = c("", "Headache", "Fever"), AETOXGR = 1:3, AESEV = 1:3, AESPID = "FORMNAME-R:16/L:16XXXX", stringsAsFactors = FALSE ) check_ae_aetoxgr(AE) AE$AETOXGR[1] <- NA check_ae_aetoxgr(AE) AE$AESEV[1] <- NA check_ae_aetoxgr(AE,preproc=roche_derive_rave_row) AE$AETOXGR <- NULL check_ae_aetoxgr(AE,preproc=roche_derive_rave_row) AE$AESPID <- NULL check_ae_aetoxgr(AE,preproc=roche_derive_rave_row) AE$AESEV <- NULL check_ae_aetoxgr(AE) AE$AEDECOD <- NULL check_ae_aetoxgr(AE)
Checks for grade 5 AEs not marked fatal (AEOUT), death not indicated (AESDTH), or no death date (AESDTHDTC)
check_ae_death(AE, preproc = identity, ...)
check_ae_death(AE, preproc = identity, ...)
AE |
Adverse Event dataframe with variables USUBJID,AETOXGR,AEOUT,AEDTHDTC,AESDTH |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
boolean value if check failed or passed with 'msg' attribute if the test failed
Iris Zhao
AE <- data.frame( USUBJID = 1:10, AETOXGR = c(1:5,5,5,5,5,5), AEDTHDTC = c(rep(NA,4),rep("2020-01-01",6)), AESDTH = c(rep(NA,4),rep("Y",6)), AEOUT = c(rep(NA,4),rep("FATAL",6)), AESPID = "FORMNAME-R:13/L:13XXXX" ) check_ae_death(AE) check_ae_death(AE,preproc=roche_derive_rave_row) AE$AEDTHDTC[5]="NA" AE$AEDTHDTC[6]=NA AE$AEDTHDTC[7]="" AE$AESDTH[8]=NA AE$AEOUT[9]=NA check_ae_death(AE) check_ae_death(AE,preproc=roche_derive_rave_row)
AE <- data.frame( USUBJID = 1:10, AETOXGR = c(1:5,5,5,5,5,5), AEDTHDTC = c(rep(NA,4),rep("2020-01-01",6)), AESDTH = c(rep(NA,4),rep("Y",6)), AEOUT = c(rep(NA,4),rep("FATAL",6)), AESPID = "FORMNAME-R:13/L:13XXXX" ) check_ae_death(AE) check_ae_death(AE,preproc=roche_derive_rave_row) AE$AEDTHDTC[5]="NA" AE$AEDTHDTC[6]=NA AE$AEDTHDTC[7]="" AE$AESDTH[8]=NA AE$AEOUT[9]=NA check_ae_death(AE) check_ae_death(AE,preproc=roche_derive_rave_row)
This checks that if death is indicated in AE via AEDTHDTC/AESDTH/AEOUT (as well as grade 5 AE if AETOXGR exists) then there should be a study discontinuation record indicated by DS.DSSCAT
check_ae_death_ds_discon(AE, DS, preproc = identity, ...)
check_ae_death_ds_discon(AE, DS, preproc = identity, ...)
AE |
Adverse Events SDTM dataset with variables USUBJID, AEDTHDTC, AESDTH, AEOUT |
DS |
Disposition SDTM dataset with variables USUBJID, DSCAT, DSSCAT |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
boolean value if check failed or passed with 'msg' attribute if the test failed
Sara Bodach
AE <- data.frame( STUDYID = rep(1,6), USUBJID = 1:6, AEDTHDTC = c(NA,"2020-01-01",NA,NA,NA,NA), AESDTH = c(NA,NA,"Y",NA,NA,NA), AEOUT = c(NA,NA,NA,"FATAL",NA,NA), AETOXGR = c(NA,NA,NA,NA,"5",NA), AESPID="FORMNAME-R:2/L:2XXXX" ) DS <- data.frame( STUDYID = 1, USUBJID = 1:3, DSCAT="DISPOSITION EVENT", DSSCAT=c("STUDY DISCON", "STUDY DISCON", "STUDY COMPLETION/EARLY DISCONTINUATION") ) check_ae_death_ds_discon(AE,DS) check_ae_death_ds_discon(AE,DS,preproc=roche_derive_rave_row) DS$DSSCAT = NULL check_ae_death_ds_discon(AE,DS)
AE <- data.frame( STUDYID = rep(1,6), USUBJID = 1:6, AEDTHDTC = c(NA,"2020-01-01",NA,NA,NA,NA), AESDTH = c(NA,NA,"Y",NA,NA,NA), AEOUT = c(NA,NA,NA,"FATAL",NA,NA), AETOXGR = c(NA,NA,NA,NA,"5",NA), AESPID="FORMNAME-R:2/L:2XXXX" ) DS <- data.frame( STUDYID = 1, USUBJID = 1:3, DSCAT="DISPOSITION EVENT", DSSCAT=c("STUDY DISCON", "STUDY DISCON", "STUDY COMPLETION/EARLY DISCONTINUATION") ) check_ae_death_ds_discon(AE,DS) check_ae_death_ds_discon(AE,DS,preproc=roche_derive_rave_row) DS$DSSCAT = NULL check_ae_death_ds_discon(AE,DS)
This checks looks for partial death dates in AE and DS
check_ae_ds_partial_death_dates(AE, DS, preproc = identity, ...)
check_ae_ds_partial_death_dates(AE, DS, preproc = identity, ...)
AE |
Adverse Events SDTM dataset with variables USUBJID,AEDTHDTC,AEDECOD |
DS |
Dispostion SDTM dataset with variables USUBJID,DSSCAT,DSSTDTC,DSDECOD |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
boolean value if check failed or passed with 'msg' attribute if the test failed
Will Harris
# test with sample data AE <- data.frame( USUBJID = 1:3, AEDECOD = c("AE1","AE2","AE3"), AEDTHDTC = c("2017-01-01","2017",NA), AESPID = "FORMNAME-R:2/L:2XXXX", stringsAsFactors=FALSE ) DS <- data.frame( USUBJID = 1:4, DSSCAT = "STUDY DISCON", DSDECOD = "DEATH", DSSTDTC = c("2017-01-01","2017","2017-01-02","2016-10"), stringsAsFactors=FALSE ) check_ae_ds_partial_death_dates(AE,DS) check_ae_ds_partial_death_dates(AE,DS,preproc=roche_derive_rave_row) DS$DSSTDTC = NULL check_ae_ds_partial_death_dates(AE,DS)
# test with sample data AE <- data.frame( USUBJID = 1:3, AEDECOD = c("AE1","AE2","AE3"), AEDTHDTC = c("2017-01-01","2017",NA), AESPID = "FORMNAME-R:2/L:2XXXX", stringsAsFactors=FALSE ) DS <- data.frame( USUBJID = 1:4, DSSCAT = "STUDY DISCON", DSDECOD = "DEATH", DSSTDTC = c("2017-01-01","2017","2017-01-02","2016-10"), stringsAsFactors=FALSE ) check_ae_ds_partial_death_dates(AE,DS) check_ae_ds_partial_death_dates(AE,DS,preproc=roche_derive_rave_row) DS$DSSTDTC = NULL check_ae_ds_partial_death_dates(AE,DS)
Identifies duplicated AE entries based on USUBJID, AETERM, AEDECOD, AESTDTC, AEENDTC, AEMODIFY (if present), AELAT (if present) and AETOXGR or AESEV
check_ae_dup(AE)
check_ae_dup(AE)
AE |
AE SDTM dataset with variables USUBJID, AETERM, AEDECOD, AESTDTC, AEENDTC, and AETOXGR or AESEV |
boolean value if check failed or passed with 'msg' attribute if the test failed
Edgar Manukyan
AE <- data.frame(USUBJID = c(1), AESTDTC = c("2020-01-01","2020-01-01","2020-02-01","2020-03-01"), AEENDTC = rep("2020-02-01",4), AEDECOD = letters[c(1,1:3)], AETERM = letters[c(1,1:3)], AETOXGR = c(1,1:3), AESPID="FORMNAME-R:5/L:5XXXX", stringsAsFactors=FALSE) check_ae_dup(AE)
AE <- data.frame(USUBJID = c(1), AESTDTC = c("2020-01-01","2020-01-01","2020-02-01","2020-03-01"), AEENDTC = rep("2020-02-01",4), AEDECOD = letters[c(1,1:3)], AETERM = letters[c(1,1:3)], AETOXGR = c(1,1:3), AESPID="FORMNAME-R:5/L:5XXXX", stringsAsFactors=FALSE) check_ae_dup(AE)
This check looks for consistency in AESDTH, AEDTHDTC, and AETOXGR (if applicable) when AEOUT is 'FATAL'. Note, this check expects AE grade/severity variables to be populated for either all records or none. In a case where both AETOXGR and AESEV exist and some records are supposed to have AETOXGR populated while others have AESEV (ie the two variables are mutually exclusive) then this check will likely return false positives.
check_ae_fatal(AE, preproc = identity, ...)
check_ae_fatal(AE, preproc = identity, ...)
AE |
Adverse Events SDTM dataset with variables USUBJID, AEDECOD, AESTDTC, AEDTHDTC, AEOUT, AESDTH |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
boolean value if check failed or passed with 'msg' attribute if the test failed
Aldrich Salva
# AETOXGR, no AESEV AE <- data.frame( USUBJID = 1:5, AESTDTC = "01JAN2017", AEDECOD = c("AE1","AE2","AE3","AE4","AE5"), AEOUT = "FATAL", AEDTHDTC = c("01FEB2017",NA,"02FEB2017","03FEB2017",NA), AESDTH = c("Y","Y","N","Y",NA), AETOXGR = c("5","5","5",NA,NA), AESPID = "FORMNAME-R:12/L:2XXXX", stringsAsFactors = FALSE ) check_ae_fatal(AE) check_ae_fatal(AE,preproc=roche_derive_rave_row) AE$AETOXGR <- NULL check_ae_fatal(AE) AE$AEDECOD <- NULL check_ae_fatal(AE) # AESEV, no AETOXGR AE <- data.frame( USUBJID = 1:5, AESTDTC = "01JAN2017", AEDECOD = c("AE1","AE2","AE3","AE4","AE5"), AEOUT = "FATAL", AEDTHDTC = c("01FEB2017","02FEB2017","03FEB2017","04FEB2017",NA), AESDTH = c("Y","Y","N","Y",NA), AESEV = c("SEVERE","MILD","SEVERE",NA,NA), AESPID = "FORMNAME-R:12/L:2XXXX", stringsAsFactors = FALSE ) check_ae_fatal(AE) check_ae_fatal(AE,preproc=roche_derive_rave_row) AE$AESEV <- NULL check_ae_fatal(AE) # Both AESEV and AETOXGR have non-missing values AE <- data.frame( USUBJID = 1:7, AESTDTC = "01JAN2017", AEDECOD = c("AE1","AE2","AE3","AE4","AE5","AE6","AE7"), AEOUT = "FATAL", AEDTHDTC = c("01FEB2017",NA,"02FEB2017","03FEB2017",NA,"04FEB2017","05FEB2017"), AESDTH = c("Y","Y","N","Y",NA,"Y","Y"), AESEV = c("SEVERE","MILD","SEVERE",NA,NA,"MILD","SEVERE"), AETOXGR = c("5","5","5",NA,NA,"1","5"), AESPID = "FORMNAME-R:12/L:2XXXX", stringsAsFactors = FALSE ) check_ae_fatal(AE) check_ae_fatal(AE,preproc=roche_derive_rave_row) # Neither AESEV or AETOXGR AE <- data.frame( USUBJID = 1:5, AESTDTC = "01JAN2017", AEDECOD = c("AE1","AE2","AE3","AE4","AE5"), AEOUT = "FATAL", AEDTHDTC = c("01FEB2017",NA,"02FEB2017","03FEB2017",NA), AESDTH = c("Y","Y","N","Y",NA), AESPID = "FORMNAME-R:12/L:2XXXX", stringsAsFactors = FALSE ) check_ae_fatal(AE) # AETOXGR exists but unmapped AESEV AE <- data.frame( USUBJID = 1:5, AESTDTC = "01JAN2017", AEDECOD = c("AE1","AE2","AE3","AE4","AE5"), AEOUT = "FATAL", AEDTHDTC = c("01FEB2017",NA,"02FEB2017","03FEB2017",NA), AESDTH = c("Y","Y","N","Y",NA), AESEV = rep(NA,5), AETOXGR = c("5","5","5",NA,NA), AESPID = "FORMNAME-R:12/L:2XXXX", stringsAsFactors = FALSE ) check_ae_fatal(AE) check_ae_fatal(AE,preproc=roche_derive_rave_row) # AETOXGR and AESEV exist, by both are unmapped AE <- data.frame( USUBJID = 1:5, AESTDTC = "01JAN2017", AEDECOD = c("AE1","AE2","AE3","AE4","AE5"), AEOUT = "FATAL", AEDTHDTC = c("01FEB2017",NA,"02FEB2017","03FEB2017",NA), AESDTH = c("Y","Y","N","Y",NA), AESEV = NA, AETOXGR = NA, AESPID = "FORMNAME-R:12/L:2XXXX", stringsAsFactors = FALSE ) check_ae_fatal(AE) check_ae_fatal(AE,preproc=roche_derive_rave_row)
# AETOXGR, no AESEV AE <- data.frame( USUBJID = 1:5, AESTDTC = "01JAN2017", AEDECOD = c("AE1","AE2","AE3","AE4","AE5"), AEOUT = "FATAL", AEDTHDTC = c("01FEB2017",NA,"02FEB2017","03FEB2017",NA), AESDTH = c("Y","Y","N","Y",NA), AETOXGR = c("5","5","5",NA,NA), AESPID = "FORMNAME-R:12/L:2XXXX", stringsAsFactors = FALSE ) check_ae_fatal(AE) check_ae_fatal(AE,preproc=roche_derive_rave_row) AE$AETOXGR <- NULL check_ae_fatal(AE) AE$AEDECOD <- NULL check_ae_fatal(AE) # AESEV, no AETOXGR AE <- data.frame( USUBJID = 1:5, AESTDTC = "01JAN2017", AEDECOD = c("AE1","AE2","AE3","AE4","AE5"), AEOUT = "FATAL", AEDTHDTC = c("01FEB2017","02FEB2017","03FEB2017","04FEB2017",NA), AESDTH = c("Y","Y","N","Y",NA), AESEV = c("SEVERE","MILD","SEVERE",NA,NA), AESPID = "FORMNAME-R:12/L:2XXXX", stringsAsFactors = FALSE ) check_ae_fatal(AE) check_ae_fatal(AE,preproc=roche_derive_rave_row) AE$AESEV <- NULL check_ae_fatal(AE) # Both AESEV and AETOXGR have non-missing values AE <- data.frame( USUBJID = 1:7, AESTDTC = "01JAN2017", AEDECOD = c("AE1","AE2","AE3","AE4","AE5","AE6","AE7"), AEOUT = "FATAL", AEDTHDTC = c("01FEB2017",NA,"02FEB2017","03FEB2017",NA,"04FEB2017","05FEB2017"), AESDTH = c("Y","Y","N","Y",NA,"Y","Y"), AESEV = c("SEVERE","MILD","SEVERE",NA,NA,"MILD","SEVERE"), AETOXGR = c("5","5","5",NA,NA,"1","5"), AESPID = "FORMNAME-R:12/L:2XXXX", stringsAsFactors = FALSE ) check_ae_fatal(AE) check_ae_fatal(AE,preproc=roche_derive_rave_row) # Neither AESEV or AETOXGR AE <- data.frame( USUBJID = 1:5, AESTDTC = "01JAN2017", AEDECOD = c("AE1","AE2","AE3","AE4","AE5"), AEOUT = "FATAL", AEDTHDTC = c("01FEB2017",NA,"02FEB2017","03FEB2017",NA), AESDTH = c("Y","Y","N","Y",NA), AESPID = "FORMNAME-R:12/L:2XXXX", stringsAsFactors = FALSE ) check_ae_fatal(AE) # AETOXGR exists but unmapped AESEV AE <- data.frame( USUBJID = 1:5, AESTDTC = "01JAN2017", AEDECOD = c("AE1","AE2","AE3","AE4","AE5"), AEOUT = "FATAL", AEDTHDTC = c("01FEB2017",NA,"02FEB2017","03FEB2017",NA), AESDTH = c("Y","Y","N","Y",NA), AESEV = rep(NA,5), AETOXGR = c("5","5","5",NA,NA), AESPID = "FORMNAME-R:12/L:2XXXX", stringsAsFactors = FALSE ) check_ae_fatal(AE) check_ae_fatal(AE,preproc=roche_derive_rave_row) # AETOXGR and AESEV exist, by both are unmapped AE <- data.frame( USUBJID = 1:5, AESTDTC = "01JAN2017", AEDECOD = c("AE1","AE2","AE3","AE4","AE5"), AEOUT = "FATAL", AEDTHDTC = c("01FEB2017",NA,"02FEB2017","03FEB2017",NA), AESDTH = c("Y","Y","N","Y",NA), AESEV = NA, AETOXGR = NA, AESPID = "FORMNAME-R:12/L:2XXXX", stringsAsFactors = FALSE ) check_ae_fatal(AE) check_ae_fatal(AE,preproc=roche_derive_rave_row)
This checks that if there is an AE with AEACN="DRUG WITHDRAWN" then there should be a treatment discontinuation record indicated by DS.DSSCAT
check_ae_withdr_ds_discon(AE, DS, TS, preproc = identity, ...)
check_ae_withdr_ds_discon(AE, DS, TS, preproc = identity, ...)
AE |
Adverse Events SDTM dataset with variables USUBJID, AEACN |
DS |
Disposition SDTM dataset with variables USUBJID, DSCAT, DSSCAT |
TS |
Trial Summary SDTM dataset with variables TSPARMCD, TSVAL |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
boolean value if check failed or passed with 'msg' attribute if the test failed
Yuliia Bahatska
AE <- data.frame( USUBJID = 1:6, AEACN = c("DRUG WITHDRAWN",NA,NA,NA,NA,NA), AETOXGR = c(NA,NA,NA,NA,"5",NA), AEDECOD=c("NAUSEA","HEADACHE"), AESPID = "FORMNAME-R:5/L:5XXXX" ) DS <- data.frame( USUBJID = 1:3, DSCAT="DISPOSITION EVENT", DSSCAT="STUDY TREATMENT", DSDECOD=c("COMPLETED","ADVERSE EVENT","DEATH") ) TS <- data.frame( TSPARMCD="TRT", TSVAL="CHECK" ) check_ae_withdr_ds_discon(AE,DS,TS) check_ae_withdr_ds_discon(AE,DS,TS,preproc=roche_derive_rave_row) DS$DSSCAT = NULL check_ae_withdr_ds_discon(AE,DS,TS)
AE <- data.frame( USUBJID = 1:6, AEACN = c("DRUG WITHDRAWN",NA,NA,NA,NA,NA), AETOXGR = c(NA,NA,NA,NA,"5",NA), AEDECOD=c("NAUSEA","HEADACHE"), AESPID = "FORMNAME-R:5/L:5XXXX" ) DS <- data.frame( USUBJID = 1:3, DSCAT="DISPOSITION EVENT", DSSCAT="STUDY TREATMENT", DSDECOD=c("COMPLETED","ADVERSE EVENT","DEATH") ) TS <- data.frame( TSPARMCD="TRT", TSVAL="CHECK" ) check_ae_withdr_ds_discon(AE,DS,TS) check_ae_withdr_ds_discon(AE,DS,TS,preproc=roche_derive_rave_row) DS$DSSCAT = NULL check_ae_withdr_ds_discon(AE,DS,TS)
Check for missing month when clinical events dates (CESTDTC, CEENDTC, CEDTC) have a known year and day
check_ce_missing_month(CE, preproc = identity, ...)
check_ce_missing_month(CE, preproc = identity, ...)
CE |
Clinical Events SDTM dataset with variables USUBJID, CETERM, and at least one of the following date variables: CESTDTC, CEENDTC, CEDTC |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
boolean value if check failed or passed with 'msg' attribute if the test failed
Ryan Marinelli
CE <- data.frame( USUBJID = c(1, 2, 3, 4), CETERM = c("Headache", "Nausea", "Dizziness", "Fever"), CESTDTC = c("2023---01", "2023-01-15", "2023-02-01", "2023-02-10"), CEENDTC = c("2023-01-02", "2023---01", "2023-02-02", "2023-02-12"), CEDTC = c("2023--01", "", "", ""), CESEV = c("Mild", "Moderate", "Mild", "Severe"), CESPID = "FORMNAME-R:13/L:13XXXX", stringsAsFactors=FALSE ) check_ce_missing_month(CE) check_ce_missing_month(CE,preproc=roche_derive_rave_row) CE <- data.frame( USUBJID = c(1, 2, 3, 4), CETERM = c("Headache", "Nausea", "Dizziness", "Fever"), CESTDTC = c("2023-01-01", "2023-01-15", "2023-02-01", "2023-02-10"), CEENDTC = c("2023-01-02", "2023-01-16", "2023-02-02", "2023-02-12"), CEENDTC = "", CESEV = c("Mild", "Moderate", "Mild", "Severe"), CESPID = "FORMNAME-R:13/L:13XXXX", stringsAsFactors=FALSE ) check_ce_missing_month(CE) CE$CETERM = NULL check_ce_missing_month(CE)
CE <- data.frame( USUBJID = c(1, 2, 3, 4), CETERM = c("Headache", "Nausea", "Dizziness", "Fever"), CESTDTC = c("2023---01", "2023-01-15", "2023-02-01", "2023-02-10"), CEENDTC = c("2023-01-02", "2023---01", "2023-02-02", "2023-02-12"), CEDTC = c("2023--01", "", "", ""), CESEV = c("Mild", "Moderate", "Mild", "Severe"), CESPID = "FORMNAME-R:13/L:13XXXX", stringsAsFactors=FALSE ) check_ce_missing_month(CE) check_ce_missing_month(CE,preproc=roche_derive_rave_row) CE <- data.frame( USUBJID = c(1, 2, 3, 4), CETERM = c("Headache", "Nausea", "Dizziness", "Fever"), CESTDTC = c("2023-01-01", "2023-01-15", "2023-02-01", "2023-02-10"), CEENDTC = c("2023-01-02", "2023-01-16", "2023-02-02", "2023-02-12"), CEENDTC = "", CESEV = c("Mild", "Moderate", "Mild", "Severe"), CESPID = "FORMNAME-R:13/L:13XXXX", stringsAsFactors=FALSE ) check_ce_missing_month(CE) CE$CETERM = NULL check_ce_missing_month(CE)
This check looks for missing CMDECOD values
check_cm_cmdecod(CM, preproc = identity, ...)
check_cm_cmdecod(CM, preproc = identity, ...)
CM |
Concomitant Medications SDTM dataset with variables USUBJID, CMTRT, CMDECOD |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
boolean value if check failed or passed with 'msg' attribute if the test failed
Lei Zhao, Stella Banjo (HackR 2021)
CM <- data.frame( USUBJID = 1:5, DOMAIN = rep("CM", 5), CMTRT = rep("DRUG TERM", 5), CMDECOD = rep("CODED DRUG TERM", 5), CMSTDTC = 1:5, CMENDTC = 1:5, CMCAT = "CONCOMITANT MEDICATIONS", CMSPID = c("FORMNAME-R:13/L:13XXXX", "FORMNAME-R:16/L:16XXXX", "FORMNAME-R:2/L:2XXXX", "FORMNAME-R:19/L:19XXXX", "FORMNAME-R:5/L:5XXXX"), stringsAsFactors=FALSE ) check_cm_cmdecod(CM) CM$CMDECOD[1] = NA CM$CMDECOD[2] = "NA" CM$CMDECOD[3:5] = "" check_cm_cmdecod(CM) check_cm_cmdecod(CM,preproc=roche_derive_rave_row) CM$CMDECOD <- NULL check_cm_cmdecod(CM)
CM <- data.frame( USUBJID = 1:5, DOMAIN = rep("CM", 5), CMTRT = rep("DRUG TERM", 5), CMDECOD = rep("CODED DRUG TERM", 5), CMSTDTC = 1:5, CMENDTC = 1:5, CMCAT = "CONCOMITANT MEDICATIONS", CMSPID = c("FORMNAME-R:13/L:13XXXX", "FORMNAME-R:16/L:16XXXX", "FORMNAME-R:2/L:2XXXX", "FORMNAME-R:19/L:19XXXX", "FORMNAME-R:5/L:5XXXX"), stringsAsFactors=FALSE ) check_cm_cmdecod(CM) CM$CMDECOD[1] = NA CM$CMDECOD[2] = "NA" CM$CMDECOD[3:5] = "" check_cm_cmdecod(CM) check_cm_cmdecod(CM,preproc=roche_derive_rave_row) CM$CMDECOD <- NULL check_cm_cmdecod(CM)
This check looks for patients with text string "PROPHYL" in CMINDC when CMPROPH is not checked as "Y" in studies with given for prophylaxis variable (CMPROPH)
check_cm_cmindc(CM, preproc = identity, ...)
check_cm_cmindc(CM, preproc = identity, ...)
CM |
Concomitant Medication SDTM dataset with variables USUBJID, CMTRT, CMSTDTC, CMINDC, CMPROPH, CMSPID (optional) |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
boolean value if check failed or passed with 'msg' attribute if the test failed
Sara Bodach, Stella Banjo (HackR 2021)
CM <- data.frame( USUBJID = c(rep(1,3),rep(2,3),rep(3,3)), CMTRT = letters[1:9], CMSTDTC = rep("2017-01-01",9), CMINDC = c(rep("INDICATION 1",2), rep("indication 2",2), rep("Prophylaxis",2),rep("PROPHYLACTIC",2),"PROPHYLAXIS FOR XYZ"), CMPROPH = c(rep("Y",3),rep(NA,2),rep("",2),"NA","."), CMSPID = "/F:XXX-D:12345-R:123", stringsAsFactors=FALSE ) check_cm_cmindc(CM) check_cm_cmindc(CM,preproc=roche_derive_rave_row) CM$CMPROPH[7] = "Y" check_cm_cmindc(CM) CM$CMSPID = NULL check_cm_cmindc(CM,preproc=roche_derive_rave_row) CM$CMPROPH = NULL check_cm_cmindc(CM)
CM <- data.frame( USUBJID = c(rep(1,3),rep(2,3),rep(3,3)), CMTRT = letters[1:9], CMSTDTC = rep("2017-01-01",9), CMINDC = c(rep("INDICATION 1",2), rep("indication 2",2), rep("Prophylaxis",2),rep("PROPHYLACTIC",2),"PROPHYLAXIS FOR XYZ"), CMPROPH = c(rep("Y",3),rep(NA,2),rep("",2),"NA","."), CMSPID = "/F:XXX-D:12345-R:123", stringsAsFactors=FALSE ) check_cm_cmindc(CM) check_cm_cmindc(CM,preproc=roche_derive_rave_row) CM$CMPROPH[7] = "Y" check_cm_cmindc(CM) CM$CMSPID = NULL check_cm_cmindc(CM,preproc=roche_derive_rave_row) CM$CMPROPH = NULL check_cm_cmindc(CM)
This check assesses CMCAT = "CONCOMITANT MEDICATIONS" and flags potential ocular records with missing/inconsistent route and laterality: for eye-related CMROUTE ('INTRAVITREAL', 'OPHTHALMIC', etc.), CMLAT is not populated -or- CMROUTE is not eye-related (i.e., not INTRAVITREAL, OPHTHALMIC, TOPICAL, etc.) but CMLAT is LEFT/RIGHT/BILATERAL.
check_cm_cmlat(CM, preproc = identity, ...)
check_cm_cmlat(CM, preproc = identity, ...)
CM |
Concomitant Medications Dataset for Ophtho Study with variables USUBJID, CMCAT, CMLAT, CMDECOD, CMTRT, CMROUTE, CMSPID (if Present), CMSTDTC (if Present) |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
boolean value if check failed or passed with 'msg' attribute if the test failed
Monarch Shah (HackR 2021 Team Eye)
Other OPHTH:
check_ae_aelat()
,
check_cm_cmlat_prior_ocular()
,
check_oe_bcva_1m_late_early_tot()
,
check_oe_bcva_4m_late_early_tot()
,
check_oe_bcva_4m_vs_1m_req()
,
check_oe_bcva_tot_mismatch()
,
check_oe_sc_lat_count_fingers()
,
check_pr_prlat()
,
check_sc_dm_eligcrit()
,
check_sc_dm_seyeselc()
CM <- data.frame( USUBJID = 1:7, CMCAT = "CONCOMITANT MEDICATIONS", CMSTDTC = 1:7, CMLAT = c("Left", "","Bilateral", "", "", "LEFT", ""), CMTRT = c("A", "B", "A", "B", "A", "A", "B"), CMDECOD = c("A", "B", "A", "B", "A", "A", "B"), CMROUTE = c("","OPHTHALMIC","INTRAVITREAL","INTRAVITREAL", "opHTHALMIC", "INTRaOCULAr", "INTRaOCULAr"), CMSPID = "FORMNAME-R:13/L:13XXXX", stringsAsFactors = FALSE) check_cm_cmlat(CM,preproc=roche_derive_rave_row) CM <- data.frame( USUBJID = 1:5, CMCAT = rep("CONCOMITANT MEDICATIONS",5), CMSTDTC = 1:5, CMLAT = c("Left", "LEFT","Bilateral", "RIGHT", "RIgHT"), CMTRT = c("A", "B", "A", "B", "A"), CMDECOD = c("A", "B", "A", "B", "A"), CMROUTE = c("","OPHTHALMIC","INTRAVITREAL", "INTRaOCULAr", "opHTHALMIC"), stringsAsFactors = FALSE) check_cm_cmlat(CM) CM <- data.frame( USUBJID = 1:5, CMCAT = "CONCOMITANT MEDICATIONS", CMSTDTC = 1:5, CMLAT = c("Left", "LEFT","Bilateral", "RIGHT", "RIgHT"), CMTRT = c("A", "B", "A", "B", "A"), CMDECOD = c("A", "B", "A", "B", "A"), #CMROUTE = c("","OPHTHALMIC","INTRAVITREAL","INTRaOCULAr", "opHTHALMIC"), stringsAsFactors = FALSE) check_cm_cmlat(CM)
CM <- data.frame( USUBJID = 1:7, CMCAT = "CONCOMITANT MEDICATIONS", CMSTDTC = 1:7, CMLAT = c("Left", "","Bilateral", "", "", "LEFT", ""), CMTRT = c("A", "B", "A", "B", "A", "A", "B"), CMDECOD = c("A", "B", "A", "B", "A", "A", "B"), CMROUTE = c("","OPHTHALMIC","INTRAVITREAL","INTRAVITREAL", "opHTHALMIC", "INTRaOCULAr", "INTRaOCULAr"), CMSPID = "FORMNAME-R:13/L:13XXXX", stringsAsFactors = FALSE) check_cm_cmlat(CM,preproc=roche_derive_rave_row) CM <- data.frame( USUBJID = 1:5, CMCAT = rep("CONCOMITANT MEDICATIONS",5), CMSTDTC = 1:5, CMLAT = c("Left", "LEFT","Bilateral", "RIGHT", "RIgHT"), CMTRT = c("A", "B", "A", "B", "A"), CMDECOD = c("A", "B", "A", "B", "A"), CMROUTE = c("","OPHTHALMIC","INTRAVITREAL", "INTRaOCULAr", "opHTHALMIC"), stringsAsFactors = FALSE) check_cm_cmlat(CM) CM <- data.frame( USUBJID = 1:5, CMCAT = "CONCOMITANT MEDICATIONS", CMSTDTC = 1:5, CMLAT = c("Left", "LEFT","Bilateral", "RIGHT", "RIgHT"), CMTRT = c("A", "B", "A", "B", "A"), CMDECOD = c("A", "B", "A", "B", "A"), #CMROUTE = c("","OPHTHALMIC","INTRAVITREAL","INTRaOCULAr", "opHTHALMIC"), stringsAsFactors = FALSE) check_cm_cmlat(CM)
This check assesses ocular CMCAT records and flags records with missing/inconsistent laterality
check_cm_cmlat_prior_ocular(CM, preproc = identity, ...)
check_cm_cmlat_prior_ocular(CM, preproc = identity, ...)
CM |
Concomitant Medications Dataset for Ophtha Study with variables USUBJID, CMCAT, CMLAT, CMTRT, CMSPID (if Present), CMSTDTC (if Present), CMLOC (if Present), CMINDC (if Present), CMDOSFRM (if Present) |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
boolean value if check failed or passed with 'msg' attribute if the test failed
Tim Barnett (HackR 2021 Team Eye) (copied from check_cm_cmlat)
Other OPHTH:
check_ae_aelat()
,
check_cm_cmlat()
,
check_oe_bcva_1m_late_early_tot()
,
check_oe_bcva_4m_late_early_tot()
,
check_oe_bcva_4m_vs_1m_req()
,
check_oe_bcva_tot_mismatch()
,
check_oe_sc_lat_count_fingers()
,
check_pr_prlat()
,
check_sc_dm_eligcrit()
,
check_sc_dm_seyeselc()
CM <- data.frame( USUBJID = 1:5, CMCAT = "PRIOR OCULAR THERAPIES AND TREATMENTS", CMSTDTC = 1:5, CMLAT = c("Left", "","Bilateral", "", ""), CMTRT = c("A", "B", "A", "B", "A"), CMDECOD = c("A", "B", "A", "B", "A"), CMROUTE = c("","OPHTHALMIC","INTRAVITREAL","INTRAVITREAL", "opHTHALMIC"), CMSPID = "FORMNAME-R:13/L:13XXXX", stringsAsFactors = FALSE) check_cm_cmlat_prior_ocular(CM,preproc=roche_derive_rave_row) CM <- data.frame( USUBJID = 1:5, CMCAT = "Prior Ocular Therapies/Treatments", CMSTDTC = 1:5, CMLAT = c("", "LEFT","Bilateral", "", "RIgHT"), CMTRT = c("A", "B", "A", "B", "A"), CMDECOD = c("A", "B", "A", "B", "A"), #CMROUTE = c("","OPHTHALMIC","INTRAVITREAL","INTRAVITREAL", "opHTHALMIC"), stringsAsFactors = FALSE) check_cm_cmlat_prior_ocular(CM) CM <- data.frame( USUBJID = 1:5, CMCAT = "CONCOMITANT MEDICATIONS", CMSTDTC = 1:5, CMLAT = c("Left", "LEFT","Bilateral", "RIGHT", "RIgHT"), CMTRT = c("A", "B", "A", "B", "A"), CMDECOD = c("A", "B", "A", "B", "A"), CMROUTE = c("","OPHTHALMIC","INTRAVITREAL","INTRAVITREAL", "opHTHALMIC"), stringsAsFactors = FALSE) check_cm_cmlat_prior_ocular(CM) CM <- data.frame( USUBJID = 1:5, CMCAT = "CONCOMITANT MEDICATIONS", CMSTDTC = 1:5, CMLAT = c("Left", "LEFT","Bilateral", "RIGHT", "RIgHT"), CMTRT = c("A", "B", "A", "B", "A"), CMDECOD = c("A", "B", "A", "B", "A"), #CMROUTE = c("","OPHTHALMIC","INTRAVITREAL","INTRAVITREAL", "opHTHALMIC"), stringsAsFactors = FALSE) check_cm_cmlat_prior_ocular(CM) CM <- data.frame( USUBJID = 1:5, CMCAT = c(rep("Prior Ocular Therapies/Treatments",3), rep("Non-Ocular Therapies/Treatments",2)), CMSTDTC = 1:5, CMLAT = c("", "LEFT","Bilateral", "", ""), CMTRT = c("A", "B", "A", "B", "A"), CMDECOD = c("A", "B", "A", "B", "A"), #CMROUTE = c("","OPHTHALMIC","INTRAVITREAL","ORAL", "ORAL"), stringsAsFactors = FALSE) check_cm_cmlat_prior_ocular(CM)
CM <- data.frame( USUBJID = 1:5, CMCAT = "PRIOR OCULAR THERAPIES AND TREATMENTS", CMSTDTC = 1:5, CMLAT = c("Left", "","Bilateral", "", ""), CMTRT = c("A", "B", "A", "B", "A"), CMDECOD = c("A", "B", "A", "B", "A"), CMROUTE = c("","OPHTHALMIC","INTRAVITREAL","INTRAVITREAL", "opHTHALMIC"), CMSPID = "FORMNAME-R:13/L:13XXXX", stringsAsFactors = FALSE) check_cm_cmlat_prior_ocular(CM,preproc=roche_derive_rave_row) CM <- data.frame( USUBJID = 1:5, CMCAT = "Prior Ocular Therapies/Treatments", CMSTDTC = 1:5, CMLAT = c("", "LEFT","Bilateral", "", "RIgHT"), CMTRT = c("A", "B", "A", "B", "A"), CMDECOD = c("A", "B", "A", "B", "A"), #CMROUTE = c("","OPHTHALMIC","INTRAVITREAL","INTRAVITREAL", "opHTHALMIC"), stringsAsFactors = FALSE) check_cm_cmlat_prior_ocular(CM) CM <- data.frame( USUBJID = 1:5, CMCAT = "CONCOMITANT MEDICATIONS", CMSTDTC = 1:5, CMLAT = c("Left", "LEFT","Bilateral", "RIGHT", "RIgHT"), CMTRT = c("A", "B", "A", "B", "A"), CMDECOD = c("A", "B", "A", "B", "A"), CMROUTE = c("","OPHTHALMIC","INTRAVITREAL","INTRAVITREAL", "opHTHALMIC"), stringsAsFactors = FALSE) check_cm_cmlat_prior_ocular(CM) CM <- data.frame( USUBJID = 1:5, CMCAT = "CONCOMITANT MEDICATIONS", CMSTDTC = 1:5, CMLAT = c("Left", "LEFT","Bilateral", "RIGHT", "RIgHT"), CMTRT = c("A", "B", "A", "B", "A"), CMDECOD = c("A", "B", "A", "B", "A"), #CMROUTE = c("","OPHTHALMIC","INTRAVITREAL","INTRAVITREAL", "opHTHALMIC"), stringsAsFactors = FALSE) check_cm_cmlat_prior_ocular(CM) CM <- data.frame( USUBJID = 1:5, CMCAT = c(rep("Prior Ocular Therapies/Treatments",3), rep("Non-Ocular Therapies/Treatments",2)), CMSTDTC = 1:5, CMLAT = c("", "LEFT","Bilateral", "", ""), CMTRT = c("A", "B", "A", "B", "A"), CMDECOD = c("A", "B", "A", "B", "A"), #CMROUTE = c("","OPHTHALMIC","INTRAVITREAL","ORAL", "ORAL"), stringsAsFactors = FALSE) check_cm_cmlat_prior_ocular(CM)
Check for missing month when conmed start (CMSTDTC) or end dates (CMENDTC) have known year and day
check_cm_missing_month(CM, preproc = identity, ...)
check_cm_missing_month(CM, preproc = identity, ...)
CM |
Concomitant Medications SDTM dataset with variables USUBJID, CMTRT, CMSTDTC, CMENDTC |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
boolean value if check failed or passed with 'msg' attribute if the test failed
Chandra Mannem
CM <- data.frame( USUBJID = 1:3, CMTRT = c("CM1","CM2","CM3"), CMSTDTC = c("2017-01-01","2017---01","2017-01-02"), CMENDTC = c("2017-02-01","2017-03-01","2017---01"), CMSPID = "/F:XXX-D:12345-R:123", stringsAsFactors=FALSE ) check_cm_missing_month(CM) check_cm_missing_month(CM,preproc=roche_derive_rave_row) CM$CMSTDTC = NULL check_cm_missing_month(CM)
CM <- data.frame( USUBJID = 1:3, CMTRT = c("CM1","CM2","CM3"), CMSTDTC = c("2017-01-01","2017---01","2017-01-02"), CMENDTC = c("2017-02-01","2017-03-01","2017---01"), CMSPID = "/F:XXX-D:12345-R:123", stringsAsFactors=FALSE ) check_cm_missing_month(CM) check_cm_missing_month(CM,preproc=roche_derive_rave_row) CM$CMSTDTC = NULL check_cm_missing_month(CM)
This check compares death date in AE AEDTHDT with death date in DS DSSTDTC. It is expected that they are the same.
check_dd_ae_aedthdtc_ds_dsstdtc(AE, DS, preproc = identity, ...)
check_dd_ae_aedthdtc_ds_dsstdtc(AE, DS, preproc = identity, ...)
AE |
Adverse Events SDTM dataset with variables USUBJID and AEDTHDTC |
DS |
Disposition SDTM dataset with variables USUBJID, DSDECOD, DSSTDTC |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
boolean value if check failed or passed with 'msg' attribute if the test failed
Hiral Raval
AE <- data.frame( STUDYID = rep(1, 3), USUBJID = 1:3, AEDTHDTC = c("2020-01-01","2020-01-02","2020-01-03"), AESPID = "FORMNAME-R:19/L:19XXXX" ) DS <- data.frame( STUDYID = rep(1, 3), USUBJID = 1:3, DSDECOD = rep("DEATH", 3), DSSTDTC = c("2020-01-01","2020-01-02","2020-01-03"), DSSPID = "XXX-R:0", stringsAsFactors = FALSE ) # no case check_dd_ae_aedthdtc_ds_dsstdtc(AE, DS) # 1 case DS[3, "DSSTDTC"] <- "2000-01-01" check_dd_ae_aedthdtc_ds_dsstdtc(AE, DS, preproc=roche_derive_rave_row) # check for non existence of vars DS$DSDECOD <- NULL DS$DSSTDTC <- NULL check_dd_ae_aedthdtc_ds_dsstdtc(AE, DS)
AE <- data.frame( STUDYID = rep(1, 3), USUBJID = 1:3, AEDTHDTC = c("2020-01-01","2020-01-02","2020-01-03"), AESPID = "FORMNAME-R:19/L:19XXXX" ) DS <- data.frame( STUDYID = rep(1, 3), USUBJID = 1:3, DSDECOD = rep("DEATH", 3), DSSTDTC = c("2020-01-01","2020-01-02","2020-01-03"), DSSPID = "XXX-R:0", stringsAsFactors = FALSE ) # no case check_dd_ae_aedthdtc_ds_dsstdtc(AE, DS) # 1 case DS[3, "DSSTDTC"] <- "2000-01-01" check_dd_ae_aedthdtc_ds_dsstdtc(AE, DS, preproc=roche_derive_rave_row) # check for non existence of vars DS$DSDECOD <- NULL DS$DSSTDTC <- NULL check_dd_ae_aedthdtc_ds_dsstdtc(AE, DS)
This check looks for AE death dates if AEOUT='FATAL' and for the reverse, i.e if there is an AE death date, then AEOUT should have the value "FATAL".
check_dd_ae_aeout_aedthdtc(AE, preproc = identity, ...)
check_dd_ae_aeout_aedthdtc(AE, preproc = identity, ...)
AE |
Adverse Events SDTM dataset with variables USUBJID, AEDTHDTC, AEDECOD, AESTDTC and AEOUT |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
boolean value if check failed or passed with 'msg' attribute if the test failed
Joel Laxamana
AE <- data.frame( USUBJID = 1:3, AEDTHDTC = c("2020-01-01","2020-01-02","2020-01-03"), AEDECOD = 1:3, AESTDTC = 1:3, AEOUT = rep("FATAL", 3), AESPID = "FORMNAME-R:19/L:19XXXX", stringsAsFactors = FALSE ) # pass check_dd_ae_aeout_aedthdtc(AE) # fail - 1 case (AEDTHDTC not populated but AEOUT == FATAL) AE1 <- AE AE1[3, "AEDTHDTC"] <- NA check_dd_ae_aeout_aedthdtc(AE1) check_dd_ae_aeout_aedthdtc(AE1,preproc=roche_derive_rave_row) # pass -- even though AEDTHDTC populated AE2 <- AE AE2[1, "AEOUT"] <- NA check_dd_ae_aeout_aedthdtc(AE2) check_dd_ae_aeout_aedthdtc(AE2,preproc=roche_derive_rave_row) # 2 cases AE[3, "AEDTHDTC"] <- NA AE[1, "AEOUT"] <- NA check_dd_ae_aeout_aedthdtc(AE) check_dd_ae_aeout_aedthdtc(AE,preproc=roche_derive_rave_row) # 2 cases AE[1, "AEOUT"] <- 'NOT RECOVERED/NOT RESOLVED' check_dd_ae_aeout_aedthdtc(AE) check_dd_ae_aeout_aedthdtc(AE,preproc=roche_derive_rave_row) # non-critical variable missing AE$AESPID <- NULL check_dd_ae_aeout_aedthdtc(AE) check_dd_ae_aeout_aedthdtc(AE,preproc=roche_derive_rave_row) # critical variables are missing AE$AEDTHDTC <- NULL AE$USUBJID <- NULL check_dd_ae_aeout_aedthdtc(AE) check_dd_ae_aeout_aedthdtc(AE,preproc=roche_derive_rave_row)
AE <- data.frame( USUBJID = 1:3, AEDTHDTC = c("2020-01-01","2020-01-02","2020-01-03"), AEDECOD = 1:3, AESTDTC = 1:3, AEOUT = rep("FATAL", 3), AESPID = "FORMNAME-R:19/L:19XXXX", stringsAsFactors = FALSE ) # pass check_dd_ae_aeout_aedthdtc(AE) # fail - 1 case (AEDTHDTC not populated but AEOUT == FATAL) AE1 <- AE AE1[3, "AEDTHDTC"] <- NA check_dd_ae_aeout_aedthdtc(AE1) check_dd_ae_aeout_aedthdtc(AE1,preproc=roche_derive_rave_row) # pass -- even though AEDTHDTC populated AE2 <- AE AE2[1, "AEOUT"] <- NA check_dd_ae_aeout_aedthdtc(AE2) check_dd_ae_aeout_aedthdtc(AE2,preproc=roche_derive_rave_row) # 2 cases AE[3, "AEDTHDTC"] <- NA AE[1, "AEOUT"] <- NA check_dd_ae_aeout_aedthdtc(AE) check_dd_ae_aeout_aedthdtc(AE,preproc=roche_derive_rave_row) # 2 cases AE[1, "AEOUT"] <- 'NOT RECOVERED/NOT RESOLVED' check_dd_ae_aeout_aedthdtc(AE) check_dd_ae_aeout_aedthdtc(AE,preproc=roche_derive_rave_row) # non-critical variable missing AE$AESPID <- NULL check_dd_ae_aeout_aedthdtc(AE) check_dd_ae_aeout_aedthdtc(AE,preproc=roche_derive_rave_row) # critical variables are missing AE$AEDTHDTC <- NULL AE$USUBJID <- NULL check_dd_ae_aeout_aedthdtc(AE) check_dd_ae_aeout_aedthdtc(AE,preproc=roche_derive_rave_row)
Flag if patient has a Death in AE (i.e. AE record with non-missing AE.AEDTHDTC) but no Death in DS (i.e. record where DS.DSDECOD=DEATH and DS.DSTERM contains 'DEATH' and does not contain 'PROGRESSIVE DISEASE' or 'DISEASE RELAPSE' (so we can pick up records where DSTERM in 'DEATH','DEATH DUE TO ...' and exclude 'DEATH DUE TO PROGRESSIVE DISEASE', 'DEATH DUE TO DISEASE RELAPSE')
check_dd_death_date(AE, DS, preproc = identity, ...)
check_dd_death_date(AE, DS, preproc = identity, ...)
AE |
Adverse Events SDTM dataset with USUBJID, AEDTHDTC, AESPID (optional) |
DS |
Disposition SDTM dataset with USUBJID, DSDECOD, DSTERM |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
boolean value if check failed or passed with 'msg' attribute if the test failed
Edgar Manukyan, N Springfield updated on 14SEP2020
AE <- data.frame( USUBJID = 1:5, AEDTHDTC = c("2018-01-01", "2018-01-02", "2018-01-03","2018-01-04", ""), AESPID="FORMNAME-R:13/L:13XXXX", stringsAsFactors = FALSE ) DS <- data.frame( USUBJID = c(1,1,2,3,3,4), DSTERM=c("DEATH","RANDOM THING","ADVERSE EVENT", "DEATH DUE TO PROGRESSIVE DISEASE","ADVERSE EVENT", "DEATH DUE TO ABC"), DSDECOD=c("DEATH","ADVERSE EVENT","DEATH", "DEATH","OTHER", "DEATH"), stringsAsFactors=FALSE ) check_dd_death_date(AE,DS) check_dd_death_date(AE,DS,preproc=roche_derive_rave_row)
AE <- data.frame( USUBJID = 1:5, AEDTHDTC = c("2018-01-01", "2018-01-02", "2018-01-03","2018-01-04", ""), AESPID="FORMNAME-R:13/L:13XXXX", stringsAsFactors = FALSE ) DS <- data.frame( USUBJID = c(1,1,2,3,3,4), DSTERM=c("DEATH","RANDOM THING","ADVERSE EVENT", "DEATH DUE TO PROGRESSIVE DISEASE","ADVERSE EVENT", "DEATH DUE TO ABC"), DSDECOD=c("DEATH","ADVERSE EVENT","DEATH", "DEATH","OTHER", "DEATH"), stringsAsFactors=FALSE ) check_dd_death_date(AE,DS) check_dd_death_date(AE,DS,preproc=roche_derive_rave_row)
This check looks for DM entries where ARM is not equal to ACTARM
check_dm_actarm_arm(DM)
check_dm_actarm_arm(DM)
DM |
Demographics SDTM dataset with variables USUBJID, ARM, and ACTARM |
Boolean value for whether the check passed or failed, with 'msg' attribute if the check failed
Ying Yuen
DM <- data.frame(USUBJID = 1:5, ARM = c(letters[1:3], letters[5:6]), ACTARM = letters[1:5], stringsAsFactors = FALSE) check_dm_actarm_arm(DM)
DM <- data.frame(USUBJID = 1:5, ARM = c(letters[1:3], letters[5:6]), ACTARM = letters[1:5], stringsAsFactors = FALSE) check_dm_actarm_arm(DM)
This checks that when death is indicated in DM with either of DTHFL or DTHDTC then there should be death indicated in either AE or DS.
check_dm_ae_ds_death(DM, DS, AE)
check_dm_ae_ds_death(DM, DS, AE)
DM |
Demographics SDTM dataset with variables USUBJID, DTHFL, DTHDTC |
DS |
Disposition SDTM dataset with variables USUBJID, DSDECOD, DSSTDTC |
AE |
Adverse Events SDTM dataset with variables USUBJID, AEDTHDTC, AESDTH, AEOUT |
boolean value if check failed or passed with 'msg' attribute if the test failed
Sara Bodach
AE <- data.frame( STUDYID = 1, USUBJID = 1:3, AEDTHDTC = c(NA,1,NA), AESDTH = c(NA,"Y",NA), AEOUT = c(NA,"FATAL",NA), AETOXGR = c(NA,"5",NA) ) DS <- data.frame( STUDYID = 1, USUBJID = 1:3, DSDECOD = c(NA,"DEATH",NA), DSSTDTC = c(NA,"DSDATE",NA) ) DM <- data.frame( STUDYID = 1, USUBJID = 1:3, DTHFL=c(NA,"Y","Y"), DTHDTC = c(NA,"DMDATE","DMDATE") ) check_dm_ae_ds_death(DM,DS,AE) DS$DSDECOD = NULL check_dm_ae_ds_death(DM,DS,AE)
AE <- data.frame( STUDYID = 1, USUBJID = 1:3, AEDTHDTC = c(NA,1,NA), AESDTH = c(NA,"Y",NA), AEOUT = c(NA,"FATAL",NA), AETOXGR = c(NA,"5",NA) ) DS <- data.frame( STUDYID = 1, USUBJID = 1:3, DSDECOD = c(NA,"DEATH",NA), DSSTDTC = c(NA,"DSDATE",NA) ) DM <- data.frame( STUDYID = 1, USUBJID = 1:3, DTHFL=c(NA,"Y","Y"), DTHDTC = c(NA,"DMDATE","DMDATE") ) check_dm_ae_ds_death(DM,DS,AE) DS$DSDECOD = NULL check_dm_ae_ds_death(DM,DS,AE)
Check for patients with missing AGE, AGE<18 or AGE>90 in DM
check_dm_age_missing(DM)
check_dm_age_missing(DM)
DM |
Demographics SDTM dataset with variables USUBJID,AGE |
boolean value if check failed or passed with 'msg' attribute if the test failed
Nina Qi
DM <- data.frame( USUBJID = 1:10, AGE = c(50,60,17,99,NA,33,500,40,22,NA) ) check_dm_age_missing(DM) DM$AGE = NULL check_dm_age_missing(DM)
DM <- data.frame( USUBJID = 1:10, AGE = c(50,60,17,99,NA,33,500,40,22,NA) ) check_dm_age_missing(DM) DM$AGE = NULL check_dm_age_missing(DM)
This check looks for missing ARM or ARMCD values
check_dm_armcd(DM)
check_dm_armcd(DM)
DM |
Demographics SDTM dataset with variables USUBJID, ARM, ARMCD |
boolean value if check failed or passed with 'msg' attribute if the test failed
Rena Wang
DM <- data.frame( USUBJID = 1:3, ARM = 1:3, ARMCD = 1:3 ) check_dm_armcd(DM) DM$ARMCD[1] <- NA check_dm_armcd(DM) DM$ARM[2] <- NA check_dm_armcd(DM) DM$ARMCD <- NULL check_dm_armcd(DM)
DM <- data.frame( USUBJID = 1:3, ARM = 1:3, ARMCD = 1:3 ) check_dm_armcd(DM) DM$ARMCD[1] <- NA check_dm_armcd(DM) DM$ARM[2] <- NA check_dm_armcd(DM) DM$ARMCD <- NULL check_dm_armcd(DM)
This check is bi-directional for consistency of DM.DTHFL and DM.DTHDTC and returns a data frame. Note there is a possible valid scenario for this issue if death date is truly unknown
check_dm_dthfl_dthdtc(DM)
check_dm_dthfl_dthdtc(DM)
DM |
Demographics SDTM dataset with variables USUBJID,DTHFL,DTHDTC |
boolean value if check failed or passed with 'msg' attribute if the test failed
Ross Farrugia
DM <- data.frame( USUBJID = 1:7, DTHFL = 1:7, DTHDTC = 1:7 ) DM$DTHFL[1] = "" DM$DTHDTC[1] = "2020-01-01" DM$DTHFL[2] = "N" DM$DTHDTC[2] = "2020-01-01" DM$DTHFL[3] = "Y" DM$DTHDTC[3] = "2020-01-01" DM$DTHFL[4] = "Y" DM$DTHDTC[4] = "" DM$DTHFL[5] = "N" DM$DTHDTC[5] = "" DM$DTHFL[6] = "Y" DM$DTHDTC[6] = "2020" DM$DTHFL[7] = "" DM$DTHDTC[7] = "" check_dm_dthfl_dthdtc(DM) DM$DTHFL <- NULL DM$DTHDTC <- NULL check_dm_dthfl_dthdtc(DM)
DM <- data.frame( USUBJID = 1:7, DTHFL = 1:7, DTHDTC = 1:7 ) DM$DTHFL[1] = "" DM$DTHDTC[1] = "2020-01-01" DM$DTHFL[2] = "N" DM$DTHDTC[2] = "2020-01-01" DM$DTHFL[3] = "Y" DM$DTHDTC[3] = "2020-01-01" DM$DTHFL[4] = "Y" DM$DTHDTC[4] = "" DM$DTHFL[5] = "N" DM$DTHDTC[5] = "" DM$DTHFL[6] = "Y" DM$DTHDTC[6] = "2020" DM$DTHFL[7] = "" DM$DTHDTC[7] = "" check_dm_dthfl_dthdtc(DM) DM$DTHFL <- NULL DM$DTHDTC <- NULL check_dm_dthfl_dthdtc(DM)
This check looks for patients in the DM dataset who do not have records in the AE dataset, and obtains first treatment start date and earliest death date for these patients
check_dm_usubjid_ae_usubjid(DM, AE, DS, EX)
check_dm_usubjid_ae_usubjid(DM, AE, DS, EX)
DM |
Demographics SDTM dataset with variable USUBJID |
AE |
Adverse Events SDTM dataset with variable USUBJID |
DS |
Disposition SDTM dataset with variables USUBJID, DSSTDTC, DSDECOD |
EX |
Exposure SDTM dataset with variables USUBJID, EXDOSE, EXSTDTC, EXTRT |
boolean value if check failed or passed with 'msg' attribute if the test failed
Vani Nimbal
USUBJID<- c(1:10) DM=data.frame(USUBJID) AE=data.frame(USUBJID) AE$USUBJID[3]=NA AE$USUBJID[8]=NA AE$USUBJID[10]=NA EX <- data.frame( USUBJID = c(1:8, 6, 8, 10, 10, 10, 10), EXOCCUR = rep("Y", times=14), EXDOSE = rep(c(1,2), times=7), EXSTDTC = c(rep("2012-01-01", 10),"2012-02-04","2012-02-04", "", "2012-02-07"), EXTRT = "GDC", stringsAsFactors=FALSE ) DS <- data.frame( USUBJID = c(2,8,8), DSDECOD = rep("DEATH", times=3), DSSTDTC = c("2012-12-01", NA, "2013-07-01"), stringsAsFactors=FALSE ) check_dm_usubjid_ae_usubjid(DM, AE, DS, EX) EX$EXOCCUR[3]="N" check_dm_usubjid_ae_usubjid(DM, AE, DS, EX) EX$EXOCCUR=NULL check_dm_usubjid_ae_usubjid(DM, AE, DS, EX)
USUBJID<- c(1:10) DM=data.frame(USUBJID) AE=data.frame(USUBJID) AE$USUBJID[3]=NA AE$USUBJID[8]=NA AE$USUBJID[10]=NA EX <- data.frame( USUBJID = c(1:8, 6, 8, 10, 10, 10, 10), EXOCCUR = rep("Y", times=14), EXDOSE = rep(c(1,2), times=7), EXSTDTC = c(rep("2012-01-01", 10),"2012-02-04","2012-02-04", "", "2012-02-07"), EXTRT = "GDC", stringsAsFactors=FALSE ) DS <- data.frame( USUBJID = c(2,8,8), DSDECOD = rep("DEATH", times=3), DSSTDTC = c("2012-12-01", NA, "2013-07-01"), stringsAsFactors=FALSE ) check_dm_usubjid_ae_usubjid(DM, AE, DS, EX) EX$EXOCCUR[3]="N" check_dm_usubjid_ae_usubjid(DM, AE, DS, EX) EX$EXOCCUR=NULL check_dm_usubjid_ae_usubjid(DM, AE, DS, EX)
This check looks for duplicate patient demographics records in DM
check_dm_usubjid_dup(DM)
check_dm_usubjid_dup(DM)
DM |
Demographics SDTM dataset with variable USUBJID |
Boolean value for whether the check passed or failed, with 'msg' attribute if the check failed
Madeleine Ma, Stella Banjo (HackR 2021)
## duplicates and same patient number across sites for 3-part USUBJID DM <- data.frame(USUBJID = c("GO12345-00000-1000", "GO12345-11111-1000", "GO12345-00000-1000", "GO12345-00000-1001"), stringsAsFactors = FALSE) check_dm_usubjid_dup(DM) ## no duplicate IDs in the dataframe for 3-part USUBJID DM2 <- data.frame(USUBJID = c("GO12345-00000-1000", "GO12345-11111-1001", "GO12345-11111-1002"), stringAsFactors = FALSE) check_dm_usubjid_dup(DM2) ## duplicates for 2-part USUBJID DM3 <- data.frame(USUBJID = c("GO12345-1000", "GO12345-1000"), stringAsFactors = FALSE) check_dm_usubjid_dup(DM3) ## no duplicate IDs in the dataframe for 2-part USUBJID DM4 <- data.frame(USUBJID = c("GO12345-1000", "GO12345-1001", "GO12345-1002"), stringAsFactors = FALSE) check_dm_usubjid_dup(DM4) ## dataframe with one or two additional variables, if there is variation across other variables DM5 <- data.frame(USUBJID = c("GO12345-1000", "GO12345-1000"), SEX = c("M", "F"), AGE = c(18, 60), stringAsFactors = FALSE) check_dm_usubjid_dup(DM5) ## dataframe in which USUBJID is not present DM6 <- data.frame( STUDYID = c("GO12345"), SEX = c("M"), AGE = c(72), stringAsFactors = FALSE) check_dm_usubjid_dup(DM6)
## duplicates and same patient number across sites for 3-part USUBJID DM <- data.frame(USUBJID = c("GO12345-00000-1000", "GO12345-11111-1000", "GO12345-00000-1000", "GO12345-00000-1001"), stringsAsFactors = FALSE) check_dm_usubjid_dup(DM) ## no duplicate IDs in the dataframe for 3-part USUBJID DM2 <- data.frame(USUBJID = c("GO12345-00000-1000", "GO12345-11111-1001", "GO12345-11111-1002"), stringAsFactors = FALSE) check_dm_usubjid_dup(DM2) ## duplicates for 2-part USUBJID DM3 <- data.frame(USUBJID = c("GO12345-1000", "GO12345-1000"), stringAsFactors = FALSE) check_dm_usubjid_dup(DM3) ## no duplicate IDs in the dataframe for 2-part USUBJID DM4 <- data.frame(USUBJID = c("GO12345-1000", "GO12345-1001", "GO12345-1002"), stringAsFactors = FALSE) check_dm_usubjid_dup(DM4) ## dataframe with one or two additional variables, if there is variation across other variables DM5 <- data.frame(USUBJID = c("GO12345-1000", "GO12345-1000"), SEX = c("M", "F"), AGE = c(18, 60), stringAsFactors = FALSE) check_dm_usubjid_dup(DM5) ## dataframe in which USUBJID is not present DM6 <- data.frame( STUDYID = c("GO12345"), SEX = c("M"), AGE = c(72), stringAsFactors = FALSE) check_dm_usubjid_dup(DM6)
This check looks for consistency when DS.DSSPID=DISCTX* then there should be AE.AEACN*=DRUG WITHDRAWN
check_ds_ae_discon(DS, AE)
check_ds_ae_discon(DS, AE)
DS |
Disposition SDTM dataset with variables USUBJID, DSSPID, DSCAT, DSDECOD, DSSTDTC |
AE |
Adverse Events SDTM dataset with variables USUBJID, AEDECOD, AESTDTC, AEACN* |
boolean value if check failed or passed with 'msg' attribute if the test failed
Sarwan Singh
AE <- data.frame( USUBJID = 1:5, AESTDTC = "01JAN2017", AETERM = c("AE1","AE2","AE3","AE4","AE5"), AEDECOD = c("AE1","AE2","AE3","AE4","AE5"), AEACN = c("DOSE REDUCED", "DOSE REDUCED", "DOSE NOT CHANGED", "DOSE NOT CHANGED", "NOT APPLICABLE"), stringsAsFactors = FALSE ) DS <- data.frame( USUBJID = 1:5, DSSPID = c('XXXDISCTXXXXX'), DSSTDTC = '01JAN2017', DSCAT = rep("DISPOSITION EVENT", 5), DSSCAT = rep("TX FORM", 5), DSDECOD = c("PHYSICIAN DECISION", "OTHER", "PHYSICIAN DECISION", "OTHER", "DEATH"), stringsAsFactors = FALSE ) # no case check_ds_ae_discon(DS, AE) # 1 case DS[3, "DSDECOD"] <- 'ADVERSE EVENT' check_ds_ae_discon(DS, AE) # mutliple AEACNx AE <- data.frame( USUBJID = 1:5, AESTDTC = c("01JAN2017"), AETERM = c("AE1","AE2","AE3","AE4","AE5"), AEDECOD = c("AE1","AE2","AE3","AE4","AE5"), AEACN = rep("MULTIPLE", 5), AEACN1 = c("DOSE REDUCED", "DOSE NOT CHANGED", "DOSE NOT CHANGED", "DOSE NOT CHANGED", "NOT APPLICABLE"), stringsAsFactors = FALSE ) check_ds_ae_discon(DS, AE)
AE <- data.frame( USUBJID = 1:5, AESTDTC = "01JAN2017", AETERM = c("AE1","AE2","AE3","AE4","AE5"), AEDECOD = c("AE1","AE2","AE3","AE4","AE5"), AEACN = c("DOSE REDUCED", "DOSE REDUCED", "DOSE NOT CHANGED", "DOSE NOT CHANGED", "NOT APPLICABLE"), stringsAsFactors = FALSE ) DS <- data.frame( USUBJID = 1:5, DSSPID = c('XXXDISCTXXXXX'), DSSTDTC = '01JAN2017', DSCAT = rep("DISPOSITION EVENT", 5), DSSCAT = rep("TX FORM", 5), DSDECOD = c("PHYSICIAN DECISION", "OTHER", "PHYSICIAN DECISION", "OTHER", "DEATH"), stringsAsFactors = FALSE ) # no case check_ds_ae_discon(DS, AE) # 1 case DS[3, "DSDECOD"] <- 'ADVERSE EVENT' check_ds_ae_discon(DS, AE) # mutliple AEACNx AE <- data.frame( USUBJID = 1:5, AESTDTC = c("01JAN2017"), AETERM = c("AE1","AE2","AE3","AE4","AE5"), AEDECOD = c("AE1","AE2","AE3","AE4","AE5"), AEACN = rep("MULTIPLE", 5), AEACN1 = c("DOSE REDUCED", "DOSE NOT CHANGED", "DOSE NOT CHANGED", "DOSE NOT CHANGED", "NOT APPLICABLE"), stringsAsFactors = FALSE ) check_ds_ae_discon(DS, AE)
If a patient has a record where DS.DSDECOD == DEATH they should also have a Study Discon Record
check_ds_dsdecod_death(DS, preproc = identity, ...)
check_ds_dsdecod_death(DS, preproc = identity, ...)
DS |
Disposition domain with variables USUBJID, DSDECOD, DSSCAT, and optional variables DSCAT, DSSTDTC, DSSPID |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
boolean value if check failed or passed with 'msg' attribute if the test failed
Sara Bodach and Will Harris
DS <- data.frame( STUDYID = 1, USUBJID = 1:3, DSDECOD = c(NA,"DEATH",NA), DSSTDTC = c(NA,"DSDATE",NA), DSCAT = c('DISPOSITION EVENT', 'DISPOSITION EVENT', 'OTHER'), DSSCAT = c('STUDY COMPLETION/EARLY DISCONTINUATION', 'TREATMENT DISCONTINUATION', 'STUDY TREATMENT'), DSOTH = 1:3, DSSPID = "XXX-R:0", stringsAsFactors=FALSE ) check_ds_dsdecod_death(DS) check_ds_dsdecod_death(DS,preproc=roche_derive_rave_row) DS$DSSCAT[2] <- "STUDY COMPLETION/EARLY DISCONTINUATION" check_ds_dsdecod_death(DS) DS$DSDECOD = NULL check_ds_dsdecod_death(DS)
DS <- data.frame( STUDYID = 1, USUBJID = 1:3, DSDECOD = c(NA,"DEATH",NA), DSSTDTC = c(NA,"DSDATE",NA), DSCAT = c('DISPOSITION EVENT', 'DISPOSITION EVENT', 'OTHER'), DSSCAT = c('STUDY COMPLETION/EARLY DISCONTINUATION', 'TREATMENT DISCONTINUATION', 'STUDY TREATMENT'), DSOTH = 1:3, DSSPID = "XXX-R:0", stringsAsFactors=FALSE ) check_ds_dsdecod_death(DS) check_ds_dsdecod_death(DS,preproc=roche_derive_rave_row) DS$DSSCAT[2] <- "STUDY COMPLETION/EARLY DISCONTINUATION" check_ds_dsdecod_death(DS) DS$DSDECOD = NULL check_ds_dsdecod_death(DS)
This check looks for patients in DS who have a record indicating death but no corresponding record with death date in DS. For example, "Survival Follow Up" records often have no death dates, so for a data cut to be applied properly, you have to impute that missing death date from another record where its not missing (e.g. Study Discon form)
check_ds_dsdecod_dsstdtc(DS)
check_ds_dsdecod_dsstdtc(DS)
DS |
Disposition SDTMv dataset with variables USUBJID, DSDECOD, DSSCAT and DSSTDTC |
Boolean value for whether the check passed or failed, with 'msg' attribute if the test failed
Will Harris
DS <- data.frame(STUDYID = rep(1, 5), USUBJID = c(1, 1, 1, 2, 3), DSDECOD = c("DEATH", "DEATH", rep("", 3)), DSSCAT = LETTERS[1:5], DSSTDTC = c("", "2016-01-01", "", "", "2016-01-02"), stringsAsFactors = FALSE) check_ds_dsdecod_dsstdtc(DS) DS$DSSTDTC[2] <- "" check_ds_dsdecod_dsstdtc(DS)
DS <- data.frame(STUDYID = rep(1, 5), USUBJID = c(1, 1, 1, 2, 3), DSDECOD = c("DEATH", "DEATH", rep("", 3)), DSSCAT = LETTERS[1:5], DSSTDTC = c("", "2016-01-01", "", "", "2016-01-02"), stringsAsFactors = FALSE) check_ds_dsdecod_dsstdtc(DS) DS$DSSTDTC[2] <- "" check_ds_dsdecod_dsstdtc(DS)
This check looks for patient who has more than one study discontinuation records
check_ds_dsscat(DS)
check_ds_dsscat(DS)
DS |
Disposition SDTM dataset with variables USUBJID,DSSCAT |
boolean value if check failed or passed with 'msg' attribute if the test failed
Madeleine Ma
DS <- data.frame( USUBJID = c(rep(1,3),rep(2,3),rep(3,3)), DSSCAT= rep(c("STUDY DISCONTINUATION", "ADVERSE EVENT", "PROTOCOL"),3), stringsAsFactors=FALSE ) check_ds_dsscat(DS) DS$DSSCAT[8] = "STUDY DISCONTINUATION" check_ds_dsscat(DS) DS$DSSCAT = NULL check_ds_dsscat(DS)
DS <- data.frame( USUBJID = c(rep(1,3),rep(2,3),rep(3,3)), DSSCAT= rep(c("STUDY DISCONTINUATION", "ADVERSE EVENT", "PROTOCOL"),3), stringsAsFactors=FALSE ) check_ds_dsscat(DS) DS$DSSCAT[8] = "STUDY DISCONTINUATION" check_ds_dsscat(DS) DS$DSSCAT = NULL check_ds_dsscat(DS)
This check looks for DS.DSTERM values with missing death reason and returns a data frame (e.g. records where DSTERM = 'DEATH DUE TO')
check_ds_dsterm_death_due_to(DS)
check_ds_dsterm_death_due_to(DS)
DS |
Disposition SDTMv dataset with variables USUBJID, DSTERM, DSDECOD, DSDTC, DSSTDTC |
boolean value if check failed or passed with 'msg' attribute if the test failed
Sara Bodach
DS <- data.frame( STUDYID = 1, USUBJID = 1:4, DSTERM = c("DEATH DUE TO", "DEATH DUE TO ", "DEATH DUE TO ADVERSE EVENT", "DEATH DUE TO UNKNOWN"), DSDECOD = "DEATH", DSDTC = "2017-01-01", DSSTDTC = "2017-01-01", stringsAsFactors=FALSE ) check_ds_dsterm_death_due_to(DS) DS$DSDECOD <- NULL check_ds_dsterm_death_due_to(DS)
DS <- data.frame( STUDYID = 1, USUBJID = 1:4, DSTERM = c("DEATH DUE TO", "DEATH DUE TO ", "DEATH DUE TO ADVERSE EVENT", "DEATH DUE TO UNKNOWN"), DSDECOD = "DEATH", DSDTC = "2017-01-01", DSSTDTC = "2017-01-01", stringsAsFactors=FALSE ) check_ds_dsterm_death_due_to(DS) DS$DSDECOD <- NULL check_ds_dsterm_death_due_to(DS)
Checks for duplicate subject IDs (USUBJID) in the DS domain when randomization is indicated
check_ds_duplicate_randomization(DS)
check_ds_duplicate_randomization(DS)
DS |
Disposition SDTM dataset with variables USUBJID, DSDECOD |
boolean value if check failed or passed with 'msg' attribute if the test failed
Madeleine Ma
DS <- data.frame( USUBJID = c("ID1","ID1","ID2","ID2","ID3","ID3"), DSDECOD = c("RANDOMIZATION","OTHER THING","RANDOMIZATION", "OTHER THING","RANDOMIZATION","RANDOMIZATION") , stringsAsFactors = FALSE ) check_ds_duplicate_randomization(DS) DS$DSDECOD <- NULL check_ds_duplicate_randomization(DS)
DS <- data.frame( USUBJID = c("ID1","ID1","ID2","ID2","ID3","ID3"), DSDECOD = c("RANDOMIZATION","OTHER THING","RANDOMIZATION", "OTHER THING","RANDOMIZATION","RANDOMIZATION") , stringsAsFactors = FALSE ) check_ds_duplicate_randomization(DS) DS$DSDECOD <- NULL check_ds_duplicate_randomization(DS)
Check for patients who had Start/End date of treatment after study discontinuation date in the DS and EX domains.
check_ds_ex_after_discon(DS, EX)
check_ds_ex_after_discon(DS, EX)
DS |
Disposition SDTM dataset with variables USUBJID, DSSCAT, DSCAT and DSSTDTC |
EX |
Exposure SDTM dataset with variables USUBJID, EXSTDTC, EXENDTC, EXTRT, EXDOSE and EXOCCUR (if available) |
Boolean value if check failed or passed with 'msg' attribute if the test failed
Saibah Chohan, Ashley Mao, Tina Cho (HackR 2021 Team STA-R)
DS <- data.frame( USUBJID = c(rep(1,2), rep(2,2)), DSSCAT= rep(c("STUDY COMPLETION/EARLY DISCONTINUATION", "ADVERSE EVENT"),2), DSCAT = rep(c("DISPOSITION EVENT", "OTHER"),2), DSSTDTC = c("2019-12-29", "2019-12-20", "2019-12-10", "2019-12-01"), stringsAsFactors = FALSE ) EX <- data.frame( USUBJID = c(rep(1,2), rep(2,2)), EXSTDTC = c("2019-12-20", "2019-12-28", "2019-12-26", "2019-12-27"), EXENDTC = c("2019-12-10", "2019-12-23", "2019-12-30", "2019-12-27"), EXTRT = c(rep("SOME DRUG", 2), rep("PLACEBO",2)), EXDOSE = c(10,10,0,0), stringsAsFactors = FALSE ) check_ds_ex_after_discon(DS, EX) DS <- data.frame( USUBJID = c(rep(1,2), rep(2,2)), DSSCAT= rep(c("STUDY COMPLETION/EARLY DISCONTINUATION", "ADVERSE EVENT"),2), DSCAT = rep(c("DISPOSITION EVENT", "OTHER"),2), DSSTDTC = c("2019-12-29", "2019-12-20", "2019-12-10", "2019-12-01"), stringsAsFactors = FALSE ) EX <- data.frame( USUBJID = c(rep(1,2), rep(2,2)), EXSTDTC = c("2019-12-20", "2019-12-28", "2019-12-01", "2019-12-02"), EXENDTC = c("2019-12-10", "2019-12-23", "2020", "2020"), EXTRT = c(rep("SOME DRUG", 2), rep("PLACEBO",2)), EXDOSE = c(10,10,0,0), stringsAsFactors = FALSE ) check_ds_ex_after_discon(DS, EX)
DS <- data.frame( USUBJID = c(rep(1,2), rep(2,2)), DSSCAT= rep(c("STUDY COMPLETION/EARLY DISCONTINUATION", "ADVERSE EVENT"),2), DSCAT = rep(c("DISPOSITION EVENT", "OTHER"),2), DSSTDTC = c("2019-12-29", "2019-12-20", "2019-12-10", "2019-12-01"), stringsAsFactors = FALSE ) EX <- data.frame( USUBJID = c(rep(1,2), rep(2,2)), EXSTDTC = c("2019-12-20", "2019-12-28", "2019-12-26", "2019-12-27"), EXENDTC = c("2019-12-10", "2019-12-23", "2019-12-30", "2019-12-27"), EXTRT = c(rep("SOME DRUG", 2), rep("PLACEBO",2)), EXDOSE = c(10,10,0,0), stringsAsFactors = FALSE ) check_ds_ex_after_discon(DS, EX) DS <- data.frame( USUBJID = c(rep(1,2), rep(2,2)), DSSCAT= rep(c("STUDY COMPLETION/EARLY DISCONTINUATION", "ADVERSE EVENT"),2), DSCAT = rep(c("DISPOSITION EVENT", "OTHER"),2), DSSTDTC = c("2019-12-29", "2019-12-20", "2019-12-10", "2019-12-01"), stringsAsFactors = FALSE ) EX <- data.frame( USUBJID = c(rep(1,2), rep(2,2)), EXSTDTC = c("2019-12-20", "2019-12-28", "2019-12-01", "2019-12-02"), EXENDTC = c("2019-12-10", "2019-12-23", "2020", "2020"), EXTRT = c(rep("SOME DRUG", 2), rep("PLACEBO",2)), EXDOSE = c(10,10,0,0), stringsAsFactors = FALSE ) check_ds_ex_after_discon(DS, EX)
This check looks for patients in DS who have multiple records indicating death, with non-missing mismatching death dates in DSSTDTC.
check_ds_multdeath_dsstdtc(DS, preproc = identity, ...)
check_ds_multdeath_dsstdtc(DS, preproc = identity, ...)
DS |
Disposition SDTMv dataset with variables USUBJID, DSDECOD, and DSSTDTC |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
Boolean value for whether the check passed or failed, with 'msg' attribute if the test failed
Kimberly Fernandes
DS_error1 <- data.frame(STUDYID = rep(1, 6), USUBJID = c(1, 1, 1, 2, 1,1), DSDECOD = c("DEATH", "DEATH", rep("", 2),"DEATH","DEATH"), DSSCAT = LETTERS[1:6], DSSTDTC = c("", "2016-01-01", "", "", "2016-01-02","2016-01-01"), stringsAsFactors = FALSE) DS_error2 <- data.frame(STUDYID = rep(1, 6), USUBJID = c(1, 1, 1, 2, 1,1), DSDECOD = c("DEATH", "DEATH", rep("", 2),"DEATH","DEATH"), DSSCAT = LETTERS[1:6], DSSTDTC = c("", "2016-01", "", "", "2016-01-01","2016-01-01"), stringsAsFactors = FALSE) DS_noerror <- data.frame(STUDYID = rep(1, 6), USUBJID = c(1, 1, 1, 2, 1,1), DSDECOD = c("DEATH", "DEATH", rep("", 2),"DEATH","DEATH"), DSSCAT = LETTERS[1:6], DSSTDTC = c("", "2016-01-01", "", "", "2016-01-01","2016-01-01"), stringsAsFactors = FALSE) check_ds_multdeath_dsstdtc(DS_error1) check_ds_multdeath_dsstdtc(DS_error2) check_ds_multdeath_dsstdtc(DS_noerror)
DS_error1 <- data.frame(STUDYID = rep(1, 6), USUBJID = c(1, 1, 1, 2, 1,1), DSDECOD = c("DEATH", "DEATH", rep("", 2),"DEATH","DEATH"), DSSCAT = LETTERS[1:6], DSSTDTC = c("", "2016-01-01", "", "", "2016-01-02","2016-01-01"), stringsAsFactors = FALSE) DS_error2 <- data.frame(STUDYID = rep(1, 6), USUBJID = c(1, 1, 1, 2, 1,1), DSDECOD = c("DEATH", "DEATH", rep("", 2),"DEATH","DEATH"), DSSCAT = LETTERS[1:6], DSSTDTC = c("", "2016-01", "", "", "2016-01-01","2016-01-01"), stringsAsFactors = FALSE) DS_noerror <- data.frame(STUDYID = rep(1, 6), USUBJID = c(1, 1, 1, 2, 1,1), DSDECOD = c("DEATH", "DEATH", rep("", 2),"DEATH","DEATH"), DSSCAT = LETTERS[1:6], DSSTDTC = c("", "2016-01-01", "", "", "2016-01-01","2016-01-01"), stringsAsFactors = FALSE) check_ds_multdeath_dsstdtc(DS_error1) check_ds_multdeath_dsstdtc(DS_error2) check_ds_multdeath_dsstdtc(DS_noerror)
Check if Study is randomized (DS.DSDECOD == "RANDOMIZED" or "RANDOMIZATION"), and subject Characteristics Domain (SC) has no stratification factors reported.
check_ds_sc_strat(DS, SC)
check_ds_sc_strat(DS, SC)
DS |
Subject Dispostion Dataset with variable USUBJID, DSDECOD, DSSTDTC |
SC |
Subject Characteristics Dataset with variables USUBJID, SCTEST, SCTESTCD, SCCAT, SCORRES |
boolean value if check failed or passed with 'msg' attribute if the test failed
Monarch Shah
ds <- data.frame(USUBJID = c(1,2,2), DSDECOD = c("RANDOMIZATION", "RANDOMIZED", "Randomized"), DSSTDTC = c("2021-01-01", "2021-01-02", "2021-02-01")) sc <- data.frame(USUBJID = c(1,1,1,2,2,2), SCCAT = rep("STRATIFICATION", 6), SCTESTCD = c("STRAT 1", "STRAT 2", "STRAT 3", "STRAT 1", "STRAT 2", "STRAT 3"), SCTEST = c("Factor 1", "Factor 2", "Factor 3", "Factor 1", "Factor 2", "Factor 3"), SCORRES = c("US", "Left", "Score > x", "RoW", "Right", "Score < x"), stringsAsFactors = FALSE) check_ds_sc_strat(ds, sc) ds <- data.frame(USUBJID = c(1,2,2), DSDECOD = c("RANDOMIZATION", "RANDOMIZED", "Randomized"), DSSTDTC = c("2021-01-01", "2021-01-02", "2021-02-01")) sc <- data.frame(USUBJID = c(1,1,1), SCCAT = rep("STRATIFICATION", 3), SCTESTCD = c("STRAT 1", "STRAT 2", "STRAT 3"), SCTEST = c("Factor 1", "Factor 2", "Factor 3"), SCORRES = c("US", "Left", NA), stringsAsFactors = FALSE) check_ds_sc_strat(ds, sc) ds <- data.frame(USUBJID = c(1,2), DSDECOD = c("Open Label", "Open Label"), DSSTDTC = c("2021-01-01", "2021-01-02")) sc <- data.frame(USUBJID = c(1,1,1,2,2,2), SCCAT = rep("No STRATIFICATION", 6), SCTESTCD = c("STRAT 1", "STRAT 2", "STRAT 3", "STRAT 1", "STRAT 2", "STRAT 3"), SCTEST = c("Factor 1", "Factor 2", "Factor 3", "Factor 1", "Factor 2", "Factor 3"), SCORRES = c("US", "Left", NA, "RoW", "Right", "Score < x"), stringsAsFactors = FALSE) check_ds_sc_strat(ds, sc)
ds <- data.frame(USUBJID = c(1,2,2), DSDECOD = c("RANDOMIZATION", "RANDOMIZED", "Randomized"), DSSTDTC = c("2021-01-01", "2021-01-02", "2021-02-01")) sc <- data.frame(USUBJID = c(1,1,1,2,2,2), SCCAT = rep("STRATIFICATION", 6), SCTESTCD = c("STRAT 1", "STRAT 2", "STRAT 3", "STRAT 1", "STRAT 2", "STRAT 3"), SCTEST = c("Factor 1", "Factor 2", "Factor 3", "Factor 1", "Factor 2", "Factor 3"), SCORRES = c("US", "Left", "Score > x", "RoW", "Right", "Score < x"), stringsAsFactors = FALSE) check_ds_sc_strat(ds, sc) ds <- data.frame(USUBJID = c(1,2,2), DSDECOD = c("RANDOMIZATION", "RANDOMIZED", "Randomized"), DSSTDTC = c("2021-01-01", "2021-01-02", "2021-02-01")) sc <- data.frame(USUBJID = c(1,1,1), SCCAT = rep("STRATIFICATION", 3), SCTESTCD = c("STRAT 1", "STRAT 2", "STRAT 3"), SCTEST = c("Factor 1", "Factor 2", "Factor 3"), SCORRES = c("US", "Left", NA), stringsAsFactors = FALSE) check_ds_sc_strat(ds, sc) ds <- data.frame(USUBJID = c(1,2), DSDECOD = c("Open Label", "Open Label"), DSSTDTC = c("2021-01-01", "2021-01-02")) sc <- data.frame(USUBJID = c(1,1,1,2,2,2), SCCAT = rep("No STRATIFICATION", 6), SCTESTCD = c("STRAT 1", "STRAT 2", "STRAT 3", "STRAT 1", "STRAT 2", "STRAT 3"), SCTEST = c("Factor 1", "Factor 2", "Factor 3", "Factor 1", "Factor 2", "Factor 3"), SCORRES = c("US", "Left", NA, "RoW", "Right", "Score < x"), stringsAsFactors = FALSE) check_ds_sc_strat(ds, sc)
If a patient has a DV record indicating COVID-19 then they should also have COVID-related AE where AE.AEDECOD matches covid.REFTERM.
check_dv_ae_aedecod_covid( AE, DV, covid_terms = c("COVID-19", "CORONAVIRUS POSITIVE") )
check_dv_ae_aedecod_covid( AE, DV, covid_terms = c("COVID-19", "CORONAVIRUS POSITIVE") )
AE |
Adverse Events SDTM dataset with variables USUBJID, AEDECOD |
DV |
Protocol Deviation SDTM dataset with variables USUBJID, DVREAS |
covid_terms |
A length >=1 vector of AE terms identifying COVID-19 (case does not matter) |
boolean value if check returns 0 obs, otherwise return subset dataframe.
Natalie Springfield
Other COVID:
check_ae_aeacn_ds_disctx_covid()
,
check_ae_aeacnoth_ds_stddisc_covid()
,
check_dv_covid()
AE <- data.frame( USUBJID = 1:6, AEDECOD = c("pandemic", "covid-19","some AE","some AE","CORONAVIRUS POSITIVE","UNMAPPED") ) DV <- data.frame( USUBJID = 1:6, DVREAS=c("SUSPECTED EPIDEMIC/PANDEMIC INFECTION", "UNKNOWN", "SUSPECTED EPIDEMIC/PANDEMIC INFECTION", "OTHER", "SUSPECTED EPIDEMIC/PANDEMIC INFECTION", "SUSPECTED EPIDEMIC/PANDEMIC INFECTION") ) check_dv_ae_aedecod_covid(AE,DV) # Pass specific covid terms check_dv_ae_aedecod_covid(AE,DV,covid_terms=c("COVID-19", "CORONAVIRUS POSITIVE","PANDEMIC"))
AE <- data.frame( USUBJID = 1:6, AEDECOD = c("pandemic", "covid-19","some AE","some AE","CORONAVIRUS POSITIVE","UNMAPPED") ) DV <- data.frame( USUBJID = 1:6, DVREAS=c("SUSPECTED EPIDEMIC/PANDEMIC INFECTION", "UNKNOWN", "SUSPECTED EPIDEMIC/PANDEMIC INFECTION", "OTHER", "SUSPECTED EPIDEMIC/PANDEMIC INFECTION", "SUSPECTED EPIDEMIC/PANDEMIC INFECTION") ) check_dv_ae_aedecod_covid(AE,DV) # Pass specific covid terms check_dv_ae_aedecod_covid(AE,DV,covid_terms=c("COVID-19", "CORONAVIRUS POSITIVE","PANDEMIC"))
This check looks for inconsistency between DVREAS and DVEPRELI. If DVREAS indicates a COVID-19 related deviation, then DVEPRELI should not be missing and vice versa. This check applies to studies using the Protocol Deviation Management System (PDMS).
check_dv_covid(DV)
check_dv_covid(DV)
DV |
Protocol Deviations SDTM dataset with variables USUBJID, DVREAS, DVEPRELI |
boolean value if check failed or passed with 'msg' attribute if the test failed
Mij Rahman
Other COVID:
check_ae_aeacn_ds_disctx_covid()
,
check_ae_aeacnoth_ds_stddisc_covid()
,
check_dv_ae_aedecod_covid()
DV <- data.frame( USUBJID = 1:3, DVEPRELI = c("Y","N","Y"), DVREAS=c("EPIDEMIC/PANDEMIC INFECTION","EPIDEMIC/PANDEMIC INFECTION",""), stringsAsFactors=FALSE ) check_dv_covid(DV)
DV <- data.frame( USUBJID = 1:3, DVEPRELI = c("Y","N","Y"), DVREAS=c("EPIDEMIC/PANDEMIC INFECTION","EPIDEMIC/PANDEMIC INFECTION",""), stringsAsFactors=FALSE ) check_dv_covid(DV)
Check if Study Drug is not administered in the Study Eye. 1.> Subset Exposure dataset (EC) for only ocular Study Drug Administration records, and pass the check if there are none. If EC.ECCAT variable is available then remove records containing EC.ECCAT = “FELLOW”. If EC.ECCAT variable is not available then include all records, assuming drug administration is collected for study eye only. 2.> Subset Subject Characteristics dataset (SC) for only Study Eye Selection 3.> Compare Exposure dataset laterality (EC.ECLAT) with Subject Characteristics dataset laterality (SC.SCSTRESC - OS = LEFT, OD = RIGHT) and report if there is any mismatch.
check_ec_sc_lat(EC, SC)
check_ec_sc_lat(EC, SC)
EC |
Subject Exposure Dataset with variables USUBJID, ECCAT (if available), ECLOC, ECMOOD, ECLAT, ECSTDY, VISIT, ECSTDTC, ECOCCUR, ECROUTE |
SC |
Subject Characteristics Dataset for Ophtha Study with variables USUBJID, SCTEST, SCTESTCD, SCCAT, SCSTRESC, SCDTC |
boolean value if check failed or passed with 'msg' attribute if the test failed
Monarch Shah (HackR 2021 Team Eye)
sc <- data.frame(USUBJID = c(1,1,1,2,2,2), SCTEST = c("Eye Meeting Eligibility Criteria", "Focus of Study-Specific Interest", " ", "Eye Meeting Eligibility Criteria", "Focus of Study-Specific Interest", " "), SCTESTCD = c("ELIGEYE", "FOCID", "", "ELIGEYE", "FOCID", ""), SCCAT = c("STUDY EYE SELECTION", "STUDY EYE SELECTION", "", "STUDY EYE SELECTION", "STUDY EYE SELECTION", ""), SCSTRESC = c("LEFT", "OS", "", "RIGHT", "OD", ""), SCDTC = "2021-01-01", stringsAsFactors = FALSE) ec <- data.frame(USUBJID = c(1,1,1,1,1,2,2,2,2,2,2), ECCAT = c("Fellow", "Study", "Study", "Study", "StudY", "Fellow", "Fellow", "STUDY", "STUDY", "STUDY", ""), ECMOOD = rep("Performed", 11), ECLOC = rep("Eye", 11), ECLAT = c("LEFT", "Left", "left", "LEFT", "LEFT", "RIGHT", "right", "right", "RIGHT", "RIGHT", "right"), ECSTDY = c(1, 28, 56, 84, 112, 1, 28, 56, 84, 112, 140), VISIT = c("Week 1", "Week 4", "Week 8", "Week 12", "Week 16", "Week 1", "Week 4", "Week 8", "Week 12", "Week 16", "Week 20"), ECSTDTC = c("2021-01-01", "2021-02-01", "2021-03-01", "2021-04-01", "2021-05-01", "2021-01-01", "2021-02-01", "2021-03-01", "2021-04-01", "2021-05-01", "2021-06-01"), ECOCCUR = "Y", ECROUTE = "INTRAVITREAL", stringsAsFactors=FALSE) check_ec_sc_lat(SC=sc, EC=ec) sc <- data.frame(USUBJID = c(1,1,1,2,2,2), SCTEST = c("Eye Meeting Eligibility Criteria", "Focus of Study-Specific Interest", " ", "Eye Meeting Eligibility Criteria", "Focus of Study-Specific Interest", " "), SCTESTCD = c("ELIGEYE", "FOCID", "", "ELIGEYE", "FOCID", ""), SCCAT = c("STUDY EYE SELECTION", "STUDY EYE SELECTION", "", "STUDY EYE SELECTION", "STUDY EYE SELECTION", ""), SCSTRESC = c("LEFT", "OS", "", "RIGHT", "OD", ""), SCDTC = "2021-01-01", stringsAsFactors = FALSE) ec <- data.frame(USUBJID = c(1,1,1,1,1,2,2,2,2,2,2), ECCAT = c("Fellow", "Study", "Study", "Study", "StudY", "Fellow", "Fellow", "STUDY", "STUDY", "STUDY", ""), ECMOOD = rep("Performed", 11), ECLOC = rep("Eye", 11), ECLAT = c("LEFT", "Left", "left", "LEFT", "RIGHT", "RIGHT", "right", "right", "RIGHT", "RIGHT", "left"), ECSTDY = c(1, 28, 56, 84, 112, 1, 28, 56, 84, 112, 140), VISIT = c("Week 1", "Week 4", "Week 8", "Week 12", "Week 16", "Week 1", "Week 4", "Week 8", "Week 12", "Week 16", "Week 20"), ECSTDTC = c("2021-01-01", "2021-02-01", "2021-03-01", "2021-04-01", "2021-05-01", "2021-01-01", "2021-02-01", "2021-03-01", "2021-04-01", "2021-05-01", "2021-06-01"), ECOCCUR = "Y", ECROUTE = "OPHTHALMIC", stringsAsFactors=FALSE) check_ec_sc_lat(SC=sc, EC=ec) sc <- data.frame(USUBJID = c(1,1,1,2,2,2,3), SCTEST = c("Eye Meeting Eligibility Criteria", "Focus of Study-Specific Interest", " ", "Eye Meeting Eligibility Criteria", "Focus of Study-Specific Interest", " ", "Focus of Study-Specific Interest"), SCTESTCD = c("ELIGEYE", "FOCID", "", "ELIGEYE", "FOCID", "", "FOCID"), SCCAT = c("STUDY EYE SELECTION", "STUDY EYE SELECTION", "", "STUDY EYE SELECTION", "STUDY EYE SELECTION", "", "STUDY EYE SELECTION"), SCSTRESC = c("LEFT", "OS", "", "RIGHT", "OD", "", "RIGHT"), SCDTC = "2021-01-01", stringsAsFactors = FALSE) ec <- data.frame(USUBJID = c(1,1,1,1,1,2,2,2,2,2,2), ECMOOD = "Performed", ECLOC = "Eye", ECLAT = c("LEFT", "Left", "left", "LEFT", "RIGHT", "RIGHT", "right", "right", "RIGHT", "RIGHT", "left"), ECSTDY = c(1, 28, 56, 84, 112, 1, 28, 56, 84, 112, 140), VISIT = c("Week 1", "Week 4", "Week 8", "Week 12", "Week 16", "Week 1", "Week 4", "Week 8", "Week 12", "Week 16", "Week 20"), ECSTDTC = c("2021-01-01", "2021-02-01", "2021-03-01", "2021-04-01", "2021-05-01", "2021-01-01", "2021-02-01", "2021-03-01", "2021-04-01", "2021-05-01", "2021-06-01"), ECOCCUR = c("Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "N"), stringsAsFactors=FALSE) check_ec_sc_lat(SC=sc, EC=ec)
sc <- data.frame(USUBJID = c(1,1,1,2,2,2), SCTEST = c("Eye Meeting Eligibility Criteria", "Focus of Study-Specific Interest", " ", "Eye Meeting Eligibility Criteria", "Focus of Study-Specific Interest", " "), SCTESTCD = c("ELIGEYE", "FOCID", "", "ELIGEYE", "FOCID", ""), SCCAT = c("STUDY EYE SELECTION", "STUDY EYE SELECTION", "", "STUDY EYE SELECTION", "STUDY EYE SELECTION", ""), SCSTRESC = c("LEFT", "OS", "", "RIGHT", "OD", ""), SCDTC = "2021-01-01", stringsAsFactors = FALSE) ec <- data.frame(USUBJID = c(1,1,1,1,1,2,2,2,2,2,2), ECCAT = c("Fellow", "Study", "Study", "Study", "StudY", "Fellow", "Fellow", "STUDY", "STUDY", "STUDY", ""), ECMOOD = rep("Performed", 11), ECLOC = rep("Eye", 11), ECLAT = c("LEFT", "Left", "left", "LEFT", "LEFT", "RIGHT", "right", "right", "RIGHT", "RIGHT", "right"), ECSTDY = c(1, 28, 56, 84, 112, 1, 28, 56, 84, 112, 140), VISIT = c("Week 1", "Week 4", "Week 8", "Week 12", "Week 16", "Week 1", "Week 4", "Week 8", "Week 12", "Week 16", "Week 20"), ECSTDTC = c("2021-01-01", "2021-02-01", "2021-03-01", "2021-04-01", "2021-05-01", "2021-01-01", "2021-02-01", "2021-03-01", "2021-04-01", "2021-05-01", "2021-06-01"), ECOCCUR = "Y", ECROUTE = "INTRAVITREAL", stringsAsFactors=FALSE) check_ec_sc_lat(SC=sc, EC=ec) sc <- data.frame(USUBJID = c(1,1,1,2,2,2), SCTEST = c("Eye Meeting Eligibility Criteria", "Focus of Study-Specific Interest", " ", "Eye Meeting Eligibility Criteria", "Focus of Study-Specific Interest", " "), SCTESTCD = c("ELIGEYE", "FOCID", "", "ELIGEYE", "FOCID", ""), SCCAT = c("STUDY EYE SELECTION", "STUDY EYE SELECTION", "", "STUDY EYE SELECTION", "STUDY EYE SELECTION", ""), SCSTRESC = c("LEFT", "OS", "", "RIGHT", "OD", ""), SCDTC = "2021-01-01", stringsAsFactors = FALSE) ec <- data.frame(USUBJID = c(1,1,1,1,1,2,2,2,2,2,2), ECCAT = c("Fellow", "Study", "Study", "Study", "StudY", "Fellow", "Fellow", "STUDY", "STUDY", "STUDY", ""), ECMOOD = rep("Performed", 11), ECLOC = rep("Eye", 11), ECLAT = c("LEFT", "Left", "left", "LEFT", "RIGHT", "RIGHT", "right", "right", "RIGHT", "RIGHT", "left"), ECSTDY = c(1, 28, 56, 84, 112, 1, 28, 56, 84, 112, 140), VISIT = c("Week 1", "Week 4", "Week 8", "Week 12", "Week 16", "Week 1", "Week 4", "Week 8", "Week 12", "Week 16", "Week 20"), ECSTDTC = c("2021-01-01", "2021-02-01", "2021-03-01", "2021-04-01", "2021-05-01", "2021-01-01", "2021-02-01", "2021-03-01", "2021-04-01", "2021-05-01", "2021-06-01"), ECOCCUR = "Y", ECROUTE = "OPHTHALMIC", stringsAsFactors=FALSE) check_ec_sc_lat(SC=sc, EC=ec) sc <- data.frame(USUBJID = c(1,1,1,2,2,2,3), SCTEST = c("Eye Meeting Eligibility Criteria", "Focus of Study-Specific Interest", " ", "Eye Meeting Eligibility Criteria", "Focus of Study-Specific Interest", " ", "Focus of Study-Specific Interest"), SCTESTCD = c("ELIGEYE", "FOCID", "", "ELIGEYE", "FOCID", "", "FOCID"), SCCAT = c("STUDY EYE SELECTION", "STUDY EYE SELECTION", "", "STUDY EYE SELECTION", "STUDY EYE SELECTION", "", "STUDY EYE SELECTION"), SCSTRESC = c("LEFT", "OS", "", "RIGHT", "OD", "", "RIGHT"), SCDTC = "2021-01-01", stringsAsFactors = FALSE) ec <- data.frame(USUBJID = c(1,1,1,1,1,2,2,2,2,2,2), ECMOOD = "Performed", ECLOC = "Eye", ECLAT = c("LEFT", "Left", "left", "LEFT", "RIGHT", "RIGHT", "right", "right", "RIGHT", "RIGHT", "left"), ECSTDY = c(1, 28, 56, 84, 112, 1, 28, 56, 84, 112, 140), VISIT = c("Week 1", "Week 4", "Week 8", "Week 12", "Week 16", "Week 1", "Week 4", "Week 8", "Week 12", "Week 16", "Week 20"), ECSTDTC = c("2021-01-01", "2021-02-01", "2021-03-01", "2021-04-01", "2021-05-01", "2021-01-01", "2021-02-01", "2021-03-01", "2021-04-01", "2021-05-01", "2021-06-01"), ECOCCUR = c("Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "N"), stringsAsFactors=FALSE) check_ec_sc_lat(SC=sc, EC=ec)
This check identifies EGDTC values that are earlier than last visit's. Unscheduled visits are excluded.
check_eg_egdtc_visit_ordinal_error(EG)
check_eg_egdtc_visit_ordinal_error(EG)
EG |
ECG Test Results SDTM dataset with variables USUBJID, VISITNUM, VISIT, EGDTC, EGSTAT |
boolean value if check failed or passed with 'msg' attribute if the test failed
James Zhang
# No case EG<- data.frame(USUBJID = 101:102, EGDTC=rep(c("2017-01-01T08:25", "2017-01-05T09:25", "2017-01-15T10:25", "2017-01-20T08:25", "2017-01-25T08:25"), 2), VISITNUM=rep(1:5,2), VISIT=rep(c("Screening", "Cycle 1", "Cycle 2", "Cycle 3","UNschedUled"),2), EGSTAT="", stringsAsFactors=FALSE) check_eg_egdtc_visit_ordinal_error(EG) # Cases with earlier datetime EG$EGDTC[EG$USUBJID == 101 & EG$VISIT == "Cycle 3"] <- "2017-01-10T08:25" EG$EGDTC[EG$USUBJID == 102 & EG$VISIT == "Cycle 1"] <- "2017-01-01T06:25" check_eg_egdtc_visit_ordinal_error(EG) # Cases with duplicated datetime EG$EGDTC[EG$USUBJID == 101 & EG$VISIT == "Cycle 3"] <- "2017-01-15T10:25" EG$EGDTC[EG$USUBJID == 102 & EG$VISIT == "Cycle 2"] <- "2017-01-01T06:25" check_eg_egdtc_visit_ordinal_error(EG) # Not checking duplicates EG<- data.frame(USUBJID = rep("101",6), EGDTC=rep("2017-01-01T08:25", 6), VISITNUM=rep(1:2,3), VISIT=rep("Screening",6), EGSTAT="", stringsAsFactors=FALSE) check_eg_egdtc_visit_ordinal_error(EG)
# No case EG<- data.frame(USUBJID = 101:102, EGDTC=rep(c("2017-01-01T08:25", "2017-01-05T09:25", "2017-01-15T10:25", "2017-01-20T08:25", "2017-01-25T08:25"), 2), VISITNUM=rep(1:5,2), VISIT=rep(c("Screening", "Cycle 1", "Cycle 2", "Cycle 3","UNschedUled"),2), EGSTAT="", stringsAsFactors=FALSE) check_eg_egdtc_visit_ordinal_error(EG) # Cases with earlier datetime EG$EGDTC[EG$USUBJID == 101 & EG$VISIT == "Cycle 3"] <- "2017-01-10T08:25" EG$EGDTC[EG$USUBJID == 102 & EG$VISIT == "Cycle 1"] <- "2017-01-01T06:25" check_eg_egdtc_visit_ordinal_error(EG) # Cases with duplicated datetime EG$EGDTC[EG$USUBJID == 101 & EG$VISIT == "Cycle 3"] <- "2017-01-15T10:25" EG$EGDTC[EG$USUBJID == 102 & EG$VISIT == "Cycle 2"] <- "2017-01-01T06:25" check_eg_egdtc_visit_ordinal_error(EG) # Not checking duplicates EG<- data.frame(USUBJID = rep("101",6), EGDTC=rep("2017-01-01T08:25", 6), VISITNUM=rep(1:2,3), VISIT=rep("Screening",6), EGSTAT="", stringsAsFactors=FALSE) check_eg_egdtc_visit_ordinal_error(EG)
This check looks for duplicate treatment records in EX
check_ex_dup(EX)
check_ex_dup(EX)
EX |
Exposure SDTM dataset with variables USUBJID, EXTRT, EXDOSE, EXSTDTC, EXSTDTC. VISIT is optional. |
boolean value if check failed or passed with 'msg' attribute if the test failed
Fang Yuan
EX <- data.frame( USUBJID = rep(1,2), EXTRT = rep(1,2), EXDOSE = rep(1,2), EXSTDTC = rep(1,2), EXOCCUR = "Y" ) check_ex_dup(EX) EX$EXOCCUR <- NULL check_ex_dup(EX) EX$EXDOSE <- NULL check_ex_dup(EX) # test with sample data without duplicates EX <- data.frame( USUBJID = 1:2, EXTRT = 1:2, EXDOSE = 1:2, EXSTDTC = 1:2, EXOCCUR = "Y" ) check_ex_dup(EX) EX = rbind(EX,EX) check_ex_dup(EX) # check non existing vars EX$EXTRT <- NULL EX$EXOCCUR <- NULL check_ex_dup(EX)
EX <- data.frame( USUBJID = rep(1,2), EXTRT = rep(1,2), EXDOSE = rep(1,2), EXSTDTC = rep(1,2), EXOCCUR = "Y" ) check_ex_dup(EX) EX$EXOCCUR <- NULL check_ex_dup(EX) EX$EXDOSE <- NULL check_ex_dup(EX) # test with sample data without duplicates EX <- data.frame( USUBJID = 1:2, EXTRT = 1:2, EXDOSE = 1:2, EXSTDTC = 1:2, EXOCCUR = "Y" ) check_ex_dup(EX) EX = rbind(EX,EX) check_ex_dup(EX) # check non existing vars EX$EXTRT <- NULL EX$EXOCCUR <- NULL check_ex_dup(EX)
This checks looks for missing EXDOSE values when EXOCCUR="Y" or when EXOCCUR does not exist. It could be for a specified drug/treatment, or for all drugs/treatments in the dataset
check_ex_exdose_exoccur(EX, drug = NULL)
check_ex_exdose_exoccur(EX, drug = NULL)
EX |
Exposure SDTM dataset with variables USUBJID, EXTRT, EXSTDTC, EXDOSE, and optional variable EXOCCUR and optional variable VISIT |
drug |
Drug name for EXTRT; used to subset the dataset. Default value is NULL (i.e. no filtering by drug) |
Boolean value for whether the check passed or failed, with 'msg' attribute if the test failed
Will Harris, Pasha Foroudi
EX <- data.frame( USUBJID = 1:3, EXSEQ = 1:3, EXSTDTC = 1:3, EXTRT = c(1,2,NA), EXOCCUR = "Y", EXDOSE = 1:3, VISIT = c("CYCLE 1 DAY 1", "CYCLE 2 DAY 1", "CYCLE 3 DAY 1") ) check_ex_exdose_exoccur(EX) EX$EXDOSE[3]=NA check_ex_exdose_exoccur(EX) EX$EXVISIT = NULL check_ex_exdose_exoccur(EX) EX$EXDOSE = NULL check_ex_exdose_exoccur(EX)
EX <- data.frame( USUBJID = 1:3, EXSEQ = 1:3, EXSTDTC = 1:3, EXTRT = c(1,2,NA), EXOCCUR = "Y", EXDOSE = 1:3, VISIT = c("CYCLE 1 DAY 1", "CYCLE 2 DAY 1", "CYCLE 3 DAY 1") ) check_ex_exdose_exoccur(EX) EX$EXDOSE[3]=NA check_ex_exdose_exoccur(EX) EX$EXVISIT = NULL check_ex_exdose_exoccur(EX) EX$EXDOSE = NULL check_ex_exdose_exoccur(EX)
This checks looks for EXDOSE values greater than 0 when EXOCCUR is not "Y". It could be for a specified drug/treatment, or for all drugs/treatments in the dataset.
check_ex_exdose_pos_exoccur_no(EX, drug = NULL)
check_ex_exdose_pos_exoccur_no(EX, drug = NULL)
EX |
Exposure SDTM dataset with variables USUBJID, EXTRT, EXSTDTC, EXOCCUR and EXDOSE |
drug |
Drug name for EXTRT; used to subset the dataset. Default value is NULL (i.e. no filtering by drug) |
Boolean value for whether the check passed or failed, with 'msg' attribute if the test failed
Sara Bodach
EX <- data.frame( USUBJID = 1:5, EXSTDTC = rep("2017-01-01",5), EXTRT = c(rep("TRT A",2),rep("TRT B",3)), EXOCCUR = c(".","", "N", "N", "Y"), EXDOSE = 0:4, VISIT = "VISIT 1", stringsAsFactors = FALSE ) check_ex_exdose_pos_exoccur_no(EX) check_ex_exdose_pos_exoccur_no(EX, drug = "TRT A") check_ex_exdose_pos_exoccur_no(EX, drug = "TRT B") EX$EXDOSE = NULL check_ex_exdose_pos_exoccur_no(EX)
EX <- data.frame( USUBJID = 1:5, EXSTDTC = rep("2017-01-01",5), EXTRT = c(rep("TRT A",2),rep("TRT B",3)), EXOCCUR = c(".","", "N", "N", "Y"), EXDOSE = 0:4, VISIT = "VISIT 1", stringsAsFactors = FALSE ) check_ex_exdose_pos_exoccur_no(EX) check_ex_exdose_pos_exoccur_no(EX, drug = "TRT A") check_ex_exdose_pos_exoccur_no(EX, drug = "TRT B") EX$EXDOSE = NULL check_ex_exdose_pos_exoccur_no(EX)
This check looks for missing EXODOSU values for valid doses
check_ex_exdosu(EX)
check_ex_exdosu(EX)
EX |
Exposure SDTM dataset with variables USUBJID,EXTRT,EXSTDTC,EXDOSU |
boolean value if check failed or passed with 'msg' attribute if the test failed
Jen Chen
EX <- data.frame( USUBJID = 1:10, EXTRT = 1:10, EXSTDTC = 1:10, EXDOSE = 1:10, EXOCCUR = as.character(c(rep("Y",5),rep("N",5))), EXDOSU = as.character(rep("mg",10)) ) EX$EXDOSU[1] = "" EX$EXDOSU[2] = "NA" EX$EXDOSU[3] = NA check_ex_exdosu(EX) EX$EXSTDTC = NULL check_ex_exdosu(EX)
EX <- data.frame( USUBJID = 1:10, EXTRT = 1:10, EXSTDTC = 1:10, EXDOSE = 1:10, EXOCCUR = as.character(c(rep("Y",5),rep("N",5))), EXDOSU = as.character(rep("mg",10)) ) EX$EXDOSU[1] = "" EX$EXDOSU[2] = "NA" EX$EXDOSU[3] = NA check_ex_exdosu(EX) EX$EXSTDTC = NULL check_ex_exdosu(EX)
This check looks for valid exposures (EXOCCUR=Y or doesn't exist) but EXDOSE (dose per administration) is not > 0 (>= 0 in case of placebo) and/or EXSTDTC (start date/treatment date) is missing or incomplete in the EX (exposure) SDTM domain
check_ex_exoccur_exdose_exstdtc(EX)
check_ex_exoccur_exdose_exstdtc(EX)
EX |
Exposure SDTM dataset with variables USUBJID, VISIT, VISITNUM, EXOCCUR, EXTRT, EXDOSE, EXSTDTC and EXENDTC |
Boolean value for whether the check passed or failed, with 'msg' attribute if the check failed
Sara Bodach
EX <- data.frame(USUBJID = LETTERS[1:5], VISIT = paste0("Visit ", 1:5), VISITNUM = 1:5, EXOCCUR = c('Y', rep('', 4)), EXTRT = LETTERS[1:5], EXDOSE = 1:5, EXSTDTC = c('2010-01-01', rep('', 4)), EXENDTC = c('2010-01-01', rep('', 4)), stringsAsFactors = FALSE) EX$EXOCCUR[2] <- 'Y' EX$EXSTDTC[2] <- '2011' EX$EXDOSE[1] <- 0 check_ex_exoccur_exdose_exstdtc(EX) EX$VISIT <- NULL check_ex_exoccur_exdose_exstdtc(EX)
EX <- data.frame(USUBJID = LETTERS[1:5], VISIT = paste0("Visit ", 1:5), VISITNUM = 1:5, EXOCCUR = c('Y', rep('', 4)), EXTRT = LETTERS[1:5], EXDOSE = 1:5, EXSTDTC = c('2010-01-01', rep('', 4)), EXENDTC = c('2010-01-01', rep('', 4)), stringsAsFactors = FALSE) EX$EXOCCUR[2] <- 'Y' EX$EXSTDTC[2] <- '2011' EX$EXDOSE[1] <- 0 check_ex_exoccur_exdose_exstdtc(EX) EX$VISIT <- NULL check_ex_exoccur_exdose_exstdtc(EX)
Checks for exposure records with missing EXOCCUR but EXDOSE not missing
check_ex_exoccur_mis_exdose_nonmis(EX)
check_ex_exoccur_mis_exdose_nonmis(EX)
EX |
Exposure dataframe with variables USUBJID, EXTRT, EXDOSE, EXOCCUR, EXSTDTC |
boolean value if check failed or passed with 'msg' attribute if the test failed
Iris Zhao
EX <- data.frame( USUBJID = 1:10, EXTRT = rep(1,10), EXOCCUR = c(rep(1,2),rep(NA,4),rep(2,4)), EXDOSE = c(rep(NA,4),rep(1,6)), EXSTDTC = 1:10 ) EX$EXOCCUR[6]="NA" EX$EXOCCUR[7]="" EX$EXOCCUR[8]=NA check_ex_exoccur_mis_exdose_nonmis(EX)
EX <- data.frame( USUBJID = 1:10, EXTRT = rep(1,10), EXOCCUR = c(rep(1,2),rep(NA,4),rep(2,4)), EXDOSE = c(rep(NA,4),rep(1,6)), EXSTDTC = 1:10 ) EX$EXOCCUR[6]="NA" EX$EXOCCUR[7]="" EX$EXOCCUR[8]=NA check_ex_exoccur_mis_exdose_nonmis(EX)
This check looks for EX dates that occur after death date
check_ex_exstdtc_after_dd(AE, DS, EX)
check_ex_exstdtc_after_dd(AE, DS, EX)
AE |
Adverse Event SDTM dataset with variables USUBJID, AEDTHDTC, AESTDTC, AEDECOD, and AETERM |
DS |
Disposition SDTM dataset with variables USUBJID, DSSTDTC, DSDECOD, and DSTERM |
EX |
Exposure SDTM dataset with variables USUBJID, EXSTDTC, EXTRT, and EXDOSE |
Boolean value for whether the check passed or failed, with 'msg' attribute if the check failed
Nina Ting Qi
AE <- data.frame(STUDYID = 1:5, USUBJID = LETTERS[1:5], AEDTHDTC = c(rep("", 4), "2016-01-01"), AESTDTC = rep("2016-01-01", 5), AEDECOD = LETTERS[1:5], AETERM = LETTERS[1:5], stringsAsFactors = FALSE) DS <- data.frame(STUDYID = 1:5, USUBJID = LETTERS[1:5], DSSTDTC = rep("2016-01-02", 5), DSDECOD = c(LETTERS[1:4], "death"), DSTERM = letters[1:5], stringsAsFactors = FALSE) EX <- data.frame(STUDYID = 1:5, USUBJID = LETTERS[1:5], EXSTDTC = rep("2015-12-31", 5), EXTRT = LETTERS[1:5], EXDOSE = 1:5, stringsAsFactors = FALSE) check_ex_exstdtc_after_dd(AE, DS, EX) EX$EXSTDTC[1] <- "2016-01-03" EX$USUBJID[1] <- EX$USUBJID[5] check_ex_exstdtc_after_dd(AE, DS, EX)
AE <- data.frame(STUDYID = 1:5, USUBJID = LETTERS[1:5], AEDTHDTC = c(rep("", 4), "2016-01-01"), AESTDTC = rep("2016-01-01", 5), AEDECOD = LETTERS[1:5], AETERM = LETTERS[1:5], stringsAsFactors = FALSE) DS <- data.frame(STUDYID = 1:5, USUBJID = LETTERS[1:5], DSSTDTC = rep("2016-01-02", 5), DSDECOD = c(LETTERS[1:4], "death"), DSTERM = letters[1:5], stringsAsFactors = FALSE) EX <- data.frame(STUDYID = 1:5, USUBJID = LETTERS[1:5], EXSTDTC = rep("2015-12-31", 5), EXTRT = LETTERS[1:5], EXDOSE = 1:5, stringsAsFactors = FALSE) check_ex_exstdtc_after_dd(AE, DS, EX) EX$EXSTDTC[1] <- "2016-01-03" EX$USUBJID[1] <- EX$USUBJID[5] check_ex_exstdtc_after_dd(AE, DS, EX)
This check identifies EXSTDTC values that are after EXENDTC values
check_ex_exstdtc_after_exendtc(EX)
check_ex_exstdtc_after_exendtc(EX)
EX |
Exposure SDTM dataset with variables USUBJID,EXTRT,EXSTDTC,EXENDTC |
boolean value if check failed or passed with 'msg' attribute if the test failed
Sara Bodach
EX <- data.frame( STUDYID = 1, USUBJID = 1:12, EXTRT = "SOME DRUG", EXSTDTC = c("2017-01-01","2017-01-03","2017-01-01T14:26","2017","2017-02","2017" ,"" , "2017" ,"2017-01-01T14:26","2017-01-01T14:26","2017-01-01T14","2017-01-01T14:26:02") , EXENDTC = c("2017-01-01","2017-01-02","2017-01-01T14:25","2015","2017-01","2016-01-01","2000", "2017-02","2017-01-01" ,"2017-01","2017-01-01T13","2017-01-01T14:26:01") , EXOCCUR = "Y", VISIT = "CYCLE 1 DAY 1", stringsAsFactors=FALSE ) check_ex_exstdtc_after_exendtc(EX) EX$EXOCCUR <- NULL EX$VISIT <- NULL check_ex_exstdtc_after_exendtc(EX) EX$EXTRT <- NULL check_ex_exstdtc_after_exendtc(EX)
EX <- data.frame( STUDYID = 1, USUBJID = 1:12, EXTRT = "SOME DRUG", EXSTDTC = c("2017-01-01","2017-01-03","2017-01-01T14:26","2017","2017-02","2017" ,"" , "2017" ,"2017-01-01T14:26","2017-01-01T14:26","2017-01-01T14","2017-01-01T14:26:02") , EXENDTC = c("2017-01-01","2017-01-02","2017-01-01T14:25","2015","2017-01","2016-01-01","2000", "2017-02","2017-01-01" ,"2017-01","2017-01-01T13","2017-01-01T14:26:01") , EXOCCUR = "Y", VISIT = "CYCLE 1 DAY 1", stringsAsFactors=FALSE ) check_ex_exstdtc_after_exendtc(EX) EX$EXOCCUR <- NULL EX$VISIT <- NULL check_ex_exstdtc_after_exendtc(EX) EX$EXTRT <- NULL check_ex_exstdtc_after_exendtc(EX)
This check identifies EXSTDTC values that are earlier than last visit's. Unscheduled visits are excluded.
check_ex_exstdtc_visit_ordinal_error(EX)
check_ex_exstdtc_visit_ordinal_error(EX)
EX |
Exposure dataset with variables USUBJID, EXTRT, VISITNUM, VISIT, EXDTC, optional variable EXOCCUR |
boolean value if check failed or passed with 'msg' attribute if the test failed
James Zhang
# no case EX <- data.frame(USUBJID = 101:102, EXTRT = rep(c("A", "B"), 5), EXSTDTC = rep(c("2017-01-01T08:25", "2017-01-05T09:25", "2017-01-15T10:25","2017-01-20T08:25","2017-01-25T08:25"), 2), VISITNUM = rep(1:5,2), VISIT = rep(c("Cycle 1", "Cycle 2", "Cycle 3", "Cycle 4", "uNscheDuledd"), 2), stringsAsFactors = FALSE) check_ex_exstdtc_visit_ordinal_error(EX) # adding cases with earlier date EX$EXSTDTC[EX$USUBJID == 101 & EX$VISIT == "Cycle 4"] <- "2017-01-10T08:25" EX$EXSTDTC[EX$USUBJID == 102 & EX$VISIT == "Cycle 2"] <- "2017-01-01T06:25" check_ex_exstdtc_visit_ordinal_error(EX) # adding cases with duplicated date EX$EXSTDTC[EX$USUBJID == 101 & EX$VISIT == "Cycle 5"] <- "2017-01-10T08:25" EX$EXSTDTC[EX$USUBJID == 102 & EX$VISIT == "Cycle 3"] <- "2017-01-01T06:25" check_ex_exstdtc_visit_ordinal_error(EX)
# no case EX <- data.frame(USUBJID = 101:102, EXTRT = rep(c("A", "B"), 5), EXSTDTC = rep(c("2017-01-01T08:25", "2017-01-05T09:25", "2017-01-15T10:25","2017-01-20T08:25","2017-01-25T08:25"), 2), VISITNUM = rep(1:5,2), VISIT = rep(c("Cycle 1", "Cycle 2", "Cycle 3", "Cycle 4", "uNscheDuledd"), 2), stringsAsFactors = FALSE) check_ex_exstdtc_visit_ordinal_error(EX) # adding cases with earlier date EX$EXSTDTC[EX$USUBJID == 101 & EX$VISIT == "Cycle 4"] <- "2017-01-10T08:25" EX$EXSTDTC[EX$USUBJID == 102 & EX$VISIT == "Cycle 2"] <- "2017-01-01T06:25" check_ex_exstdtc_visit_ordinal_error(EX) # adding cases with duplicated date EX$EXSTDTC[EX$USUBJID == 101 & EX$VISIT == "Cycle 5"] <- "2017-01-10T08:25" EX$EXSTDTC[EX$USUBJID == 102 & EX$VISIT == "Cycle 3"] <- "2017-01-01T06:25" check_ex_exstdtc_visit_ordinal_error(EX)
This check looks for EX records where EXTRT is missing but EXOCCUR=Y (or EXOCCUR doesn't exist) and returns a data frame
check_ex_extrt_exoccur(EX)
check_ex_extrt_exoccur(EX)
EX |
Exposure domain with variables USUBJID, EXSTDTC, EXTRT, EXDOSE |
boolean value if check failed or passed with 'msg' attribute if the test failed
Betty Wang
EX <- data.frame( USUBJID = 1:10, EXTRT = 1:10, EXOCCUR = c(rep("Y",5), rep("",5)), EXSTDTC = "2016-01-01", EXDOSE = 1:10, stringsAsFactors=FALSE ) EX$EXTRT[1]="" EX$EXTRT[2]="NA" EX$EXTRT[3]=NA EX$EXTRT[6]="" EX$EXTRT[7]="NA" EX$EXTRT[8]=NA check_ex_extrt_exoccur(EX) EX$EXOCCUR=NULL check_ex_extrt_exoccur(EX)
EX <- data.frame( USUBJID = 1:10, EXTRT = 1:10, EXOCCUR = c(rep("Y",5), rep("",5)), EXSTDTC = "2016-01-01", EXDOSE = 1:10, stringsAsFactors=FALSE ) EX$EXTRT[1]="" EX$EXTRT[2]="NA" EX$EXTRT[3]=NA EX$EXTRT[6]="" EX$EXTRT[7]="NA" EX$EXTRT[8]=NA check_ex_extrt_exoccur(EX) EX$EXOCCUR=NULL check_ex_extrt_exoccur(EX)
This check identifies that an infusion drug has same EXSTDTC and EXENDTC dateparts. If time is available for both dates, also check that end time is after start time. Missing start/end dates are also included.
check_ex_infusion_exstdtc_exendtc(EX)
check_ex_infusion_exstdtc_exendtc(EX)
EX |
Exposure SDTM dataset with variables USUBJID,EXTRT,EXSTDTC,EXENDTC,EXROUTE |
boolean value if check failed or passed with 'msg' attribute if the test failed
Anastasiia Khmelnytska, Stella Banjo(HackR 2021)
EX <- data.frame( STUDYID = 1, USUBJID = 1:12, EXTRT = "SOME DRUG", EXROUTE = "INTRAVENOUS", EXSTDTC = c("2017-01-01","2017-01-02","2017-01-01T14:36","2015","2017-02","2017" ,"" , "2017" ,"2017-01-01T14:26","2017-01-01T14:26","2017-01-01T14","2017-01-01T14:26:01") , EXENDTC = c("2017-01-01","2017-01-03","2017-01-01T14:35","2017","2017-01","2016-01-01","2000", "2017-02","2017-01-01" ,"2017-01","2017-01-01T13","2017-01-02T14:26:02") , EXOCCUR = "Y", VISIT = "CYCLE 1 DAY 1", stringsAsFactors=FALSE ) check_ex_infusion_exstdtc_exendtc(EX) EX2 <- data.frame( STUDYID = 1, USUBJID = 1:4, EXTRT = "SOME DRUG", EXROUTE = "INTRAVENOUS", EXSTDTC = c("2017-01-03", "", "2017-02-01T14:26", ""), EXENDTC = c("", "2017-02-03", "", "2017-02-02T14:26:02"), EXOCCUR = "Y", VISIT = "CYCLE 1 DAY 1", stringsAsFactors = FALSE ) check_ex_infusion_exstdtc_exendtc(EX2) EX3 <- data.frame( STUDYID = 1, USUBJID = 1:3, EXTRT = "SOME DRUG", EXROUTE = "INTRAVENOUS", EXSTDTC = c("2017-01-01", "2017-01-01T14:26", "2017-01-01T14:26"), EXENDTC = c("2017-01-01", "2017-01-01", "2017-01"), EXOCCUR = "Y", VISIT = "CYCLE 1 DAY 1", stringsAsFactors=FALSE ) check_ex_infusion_exstdtc_exendtc(EX3)
EX <- data.frame( STUDYID = 1, USUBJID = 1:12, EXTRT = "SOME DRUG", EXROUTE = "INTRAVENOUS", EXSTDTC = c("2017-01-01","2017-01-02","2017-01-01T14:36","2015","2017-02","2017" ,"" , "2017" ,"2017-01-01T14:26","2017-01-01T14:26","2017-01-01T14","2017-01-01T14:26:01") , EXENDTC = c("2017-01-01","2017-01-03","2017-01-01T14:35","2017","2017-01","2016-01-01","2000", "2017-02","2017-01-01" ,"2017-01","2017-01-01T13","2017-01-02T14:26:02") , EXOCCUR = "Y", VISIT = "CYCLE 1 DAY 1", stringsAsFactors=FALSE ) check_ex_infusion_exstdtc_exendtc(EX) EX2 <- data.frame( STUDYID = 1, USUBJID = 1:4, EXTRT = "SOME DRUG", EXROUTE = "INTRAVENOUS", EXSTDTC = c("2017-01-03", "", "2017-02-01T14:26", ""), EXENDTC = c("", "2017-02-03", "", "2017-02-02T14:26:02"), EXOCCUR = "Y", VISIT = "CYCLE 1 DAY 1", stringsAsFactors = FALSE ) check_ex_infusion_exstdtc_exendtc(EX2) EX3 <- data.frame( STUDYID = 1, USUBJID = 1:3, EXTRT = "SOME DRUG", EXROUTE = "INTRAVENOUS", EXSTDTC = c("2017-01-01", "2017-01-01T14:26", "2017-01-01T14:26"), EXENDTC = c("2017-01-01", "2017-01-01", "2017-01"), EXOCCUR = "Y", VISIT = "CYCLE 1 DAY 1", stringsAsFactors=FALSE ) check_ex_infusion_exstdtc_exendtc(EX3)
This check looks missing EX.VISIT values when EX.EXOCCUR=Y (or EX.EXOCCUR doesn't exist)
check_ex_visit(EX)
check_ex_visit(EX)
EX |
Exposure SDTM dataset with variables USUBJID,EXTRT,EXSTDTC,VISIT, and optional variable EXOCCUR |
boolean value if check failed or passed with 'msg' attribute if the test failed
Jen Chen
EX <- data.frame( USUBJID = 1:3, EXTRT = 1:3, EXSTDTC = 1:3, EXOCCUR = "Y", VISIT = NA ) check_ex_visit(EX) EX$EXOCCUR=NULL check_ex_visit(EX) EX$VISIT=NULL check_ex_visit(EX)#
EX <- data.frame( USUBJID = 1:3, EXTRT = 1:3, EXSTDTC = 1:3, EXOCCUR = "Y", VISIT = NA ) check_ex_visit(EX) EX$EXOCCUR=NULL check_ex_visit(EX) EX$VISIT=NULL check_ex_visit(EX)#
This check looks for LB dates that occur after death date
check_lb_lbdtc_after_dd(AE, DS, LB)
check_lb_lbdtc_after_dd(AE, DS, LB)
AE |
Adverse Event SDTM dataset with variables USUBJID, AEDTHDTC, AESTDTC, AEDECOD, and AETERM |
DS |
Disposition SDTM dataset with variables USUBJID, DSSTDTC, DSDECOD, and DSTERM |
LB |
Laboratory Test Findings SDTM dataset with variables USUBJID, LBDTC, LBTESTCD, and LBORRES |
Boolean value for whether the check passed or failed, with 'msg' attribute if the check failed
Nina Ting Qi
AE <- data.frame(STUDYID = 1:5, USUBJID = LETTERS[1:5], AEDTHDTC = c(rep("", 4), "2016-01-01"), AESTDTC = rep("2016-01-01", 5), AEDECOD = LETTERS[1:5], AETERM = LETTERS[1:5], stringsAsFactors = FALSE) DS <- data.frame(STUDYID = 1:5, USUBJID = LETTERS[1:5], DSSTDTC = rep("2016-01-02", 5), DSDECOD = c(LETTERS[1:4], "death"), DSTERM = letters[1:5], stringsAsFactors = FALSE) LB <- data.frame(STUDYID = 1:5, USUBJID = LETTERS[1:5], LBDTC = rep("2015-12-31", 5), LBTESTCD = letters[1:5], LBORRES = 1:5, stringsAsFactors = FALSE) check_lb_lbdtc_after_dd(AE, DS, LB) LB$LBDTC[1] <- "2016-01-03" LB$USUBJID[1] <- LB$USUBJID[5] check_lb_lbdtc_after_dd(AE, DS, LB)
AE <- data.frame(STUDYID = 1:5, USUBJID = LETTERS[1:5], AEDTHDTC = c(rep("", 4), "2016-01-01"), AESTDTC = rep("2016-01-01", 5), AEDECOD = LETTERS[1:5], AETERM = LETTERS[1:5], stringsAsFactors = FALSE) DS <- data.frame(STUDYID = 1:5, USUBJID = LETTERS[1:5], DSSTDTC = rep("2016-01-02", 5), DSDECOD = c(LETTERS[1:4], "death"), DSTERM = letters[1:5], stringsAsFactors = FALSE) LB <- data.frame(STUDYID = 1:5, USUBJID = LETTERS[1:5], LBDTC = rep("2015-12-31", 5), LBTESTCD = letters[1:5], LBORRES = 1:5, stringsAsFactors = FALSE) check_lb_lbdtc_after_dd(AE, DS, LB) LB$LBDTC[1] <- "2016-01-03" LB$USUBJID[1] <- LB$USUBJID[5] check_lb_lbdtc_after_dd(AE, DS, LB)
This check identifies LBDTC values that are duplicated or earlier than last visit's. Records with LBSTAT == 'NOT DONE' and unscheduled visits (VISIT with the string "UNSCHEDU") and treatment discon visits (VISIT with the string "TREATMENT OR OBSERVATION FU COMP EARLY DISC") are excluded.
check_lb_lbdtc_visit_ordinal_error(LB)
check_lb_lbdtc_visit_ordinal_error(LB)
LB |
SDTM dataset with variables USUBJID, VISITNUM, VISIT, LBDTC, LBTESTCD, LBSTAT |
boolean value if check failed or passed with 'msg' attribute if the test failed
Simon Luo
# no case LB1 <- data.frame(USUBJID = c(rep("101", 5), rep("102", 5)), LBCAT = "Hematology", LBDTC = rep(c( "2017-01-01T08:25", "2017-01-05T09:25", "2017-01-15T10:25", "2017-01-20T08:25", "2017-01-25T08:25"), 2), VISITNUM = rep(1:5,2), VISIT = rep(c( "Visit 1", "Visit 2", "Visit 3", "UNSCheduled!!!", "VIsit 5"), 2), LBSTAT = c(rep("", 9), "NOT DONE"), stringsAsFactors = FALSE) check_lb_lbdtc_visit_ordinal_error(LB1) LB2 = LB1 LB2$LBCAT = "Virology" LB3 <- rbind(LB1, LB2) check_lb_lbdtc_visit_ordinal_error(LB3) # adding cases with earlier date LB3$LBDTC[LB3$USUBJID == 101 & LB3$VISIT == "Visit 3"] <- "2016-01-10T08:25" LB3$LBDTC[LB3$USUBJID == 102 & LB3$VISIT == "Visit 2"] <- "2016-01-01T06:25" check_lb_lbdtc_visit_ordinal_error(LB = LB3) # adding cases with duplicated date LB3$LBDTC[LB3$USUBJID == 102 & LB3$VISIT == "Visit 3"] <- "2017-01-15T10:25" LB3 <- LB3[order(LB3$USUBJID, LB3$VISITNUM, LB3$LBDTC),] check_lb_lbdtc_visit_ordinal_error(LB = LB3) # check if all NOT DONE LB4 = LB3 LB4$LBSTAT = "NOT DONE" check_lb_lbdtc_visit_ordinal_error(LB = LB4) # check dropping a required variable LB4$LBSTAT = NULL check_lb_lbdtc_visit_ordinal_error(LB = LB4)
# no case LB1 <- data.frame(USUBJID = c(rep("101", 5), rep("102", 5)), LBCAT = "Hematology", LBDTC = rep(c( "2017-01-01T08:25", "2017-01-05T09:25", "2017-01-15T10:25", "2017-01-20T08:25", "2017-01-25T08:25"), 2), VISITNUM = rep(1:5,2), VISIT = rep(c( "Visit 1", "Visit 2", "Visit 3", "UNSCheduled!!!", "VIsit 5"), 2), LBSTAT = c(rep("", 9), "NOT DONE"), stringsAsFactors = FALSE) check_lb_lbdtc_visit_ordinal_error(LB1) LB2 = LB1 LB2$LBCAT = "Virology" LB3 <- rbind(LB1, LB2) check_lb_lbdtc_visit_ordinal_error(LB3) # adding cases with earlier date LB3$LBDTC[LB3$USUBJID == 101 & LB3$VISIT == "Visit 3"] <- "2016-01-10T08:25" LB3$LBDTC[LB3$USUBJID == 102 & LB3$VISIT == "Visit 2"] <- "2016-01-01T06:25" check_lb_lbdtc_visit_ordinal_error(LB = LB3) # adding cases with duplicated date LB3$LBDTC[LB3$USUBJID == 102 & LB3$VISIT == "Visit 3"] <- "2017-01-15T10:25" LB3 <- LB3[order(LB3$USUBJID, LB3$VISITNUM, LB3$LBDTC),] check_lb_lbdtc_visit_ordinal_error(LB = LB3) # check if all NOT DONE LB4 = LB3 LB4$LBSTAT = "NOT DONE" check_lb_lbdtc_visit_ordinal_error(LB = LB4) # check dropping a required variable LB4$LBSTAT = NULL check_lb_lbdtc_visit_ordinal_error(LB = LB4)
This check looks for missing lab reference ranges (LBSTNRLO, LBSTNRHI) in standard units when numeric result in standard unit (LBSTRESN) is not missing and returns a data frame
check_lb_lbstnrlo_lbstnrhi(DM, LB)
check_lb_lbstnrlo_lbstnrhi(DM, LB)
DM |
DM SDTM dataset with variable USUBJID, SITEID |
LB |
Lab SDTM dataset with variables USUBJID, LBTEST, LBSTRESN, LBSTNRLO, LBSTNRHI |
boolean value if check failed or passed with 'msg' attribute if the test failed
Lei Zhao
LB <- data.frame( USUBJID = "1", LBTEST = "Albumin", LBSTRESN = 1:10, LBSTNRLO = 1:10, LBSTNRHI = 1:10, stringsAsFactors=FALSE ) LB$LBSTNRLO[1]="" LB$LBSTNRLO[2]="NA" LB$LBSTNRLO[3]=NA LB$LBSTNRHI[3]="" LB$LBSTNRHI[4]="NA" LB$LBSTNRHI[5]=NA DM <- data.frame( USUBJID = "1", SITEID = "123456", stringsAsFactors=FALSE ) check_lb_lbstnrlo_lbstnrhi(DM, LB)
LB <- data.frame( USUBJID = "1", LBTEST = "Albumin", LBSTRESN = 1:10, LBSTNRLO = 1:10, LBSTNRHI = 1:10, stringsAsFactors=FALSE ) LB$LBSTNRLO[1]="" LB$LBSTNRLO[2]="NA" LB$LBSTNRLO[3]=NA LB$LBSTNRHI[3]="" LB$LBSTNRHI[4]="NA" LB$LBSTNRHI[5]=NA DM <- data.frame( USUBJID = "1", SITEID = "123456", stringsAsFactors=FALSE ) check_lb_lbstnrlo_lbstnrhi(DM, LB)
This check looks for missing numeric standardized finding (LBSTRESN) when original finding (LBORRES) and character standardized finding (LBSTRESC) are not missing and LBORRES/LBSTRESC populated with number beginning with character '>' or '<'
check_lb_lbstresc_char(LB)
check_lb_lbstresc_char(LB)
LB |
Lab SDTM dataset with variables USUBJID, LBTEST, LBDTC, LBORRES, LBORRESU, LBSTRESN, LBSTRESC |
boolean value if check failed or passed with 'msg' attribute if the test failed
Vira Vrakina
LB <- data.frame( USUBJID = c("Patient 1","Patient 2","Patient 3"), LBTEST = "Test A", LBDTC = "2017-01-01", LBORRES = c("5","3","7"), LBORRESU = rep("mg",3), LBSTRESC = c("5","3","7"), LBSTRESN = c(5,3,7), stringsAsFactors = FALSE ) check_lb_lbstresc_char(LB) LB <- data.frame( USUBJID = c("Patient 1","Patient 2","Patient 3"), LBTEST = rep("Test A", 3), LBDTC = "2017-01-01", LBORRES = c("5","3","<7"), LBORRESU = rep("mg",3), LBSTRESC = c("5","3","<7"), LBSTRESN = c(5,3,NA), stringsAsFactors = FALSE ) check_lb_lbstresc_char(LB) LB <- data.frame( USUBJID = c("Patient 1","Patient 2","Patient 3"), LBTEST = rep("Test A", 3), LBDTC = rep("2017-01-01", 3), LBORRES = c("5","BLQ","<7"), LBORRESU = rep("mg",3), LBSTRESC = c("5","BLQ","<7"), LBSTRESN = c(5,NA,NA), stringsAsFactors = FALSE ) check_lb_lbstresc_char(LB)
LB <- data.frame( USUBJID = c("Patient 1","Patient 2","Patient 3"), LBTEST = "Test A", LBDTC = "2017-01-01", LBORRES = c("5","3","7"), LBORRESU = rep("mg",3), LBSTRESC = c("5","3","7"), LBSTRESN = c(5,3,7), stringsAsFactors = FALSE ) check_lb_lbstresc_char(LB) LB <- data.frame( USUBJID = c("Patient 1","Patient 2","Patient 3"), LBTEST = rep("Test A", 3), LBDTC = "2017-01-01", LBORRES = c("5","3","<7"), LBORRESU = rep("mg",3), LBSTRESC = c("5","3","<7"), LBSTRESN = c(5,3,NA), stringsAsFactors = FALSE ) check_lb_lbstresc_char(LB) LB <- data.frame( USUBJID = c("Patient 1","Patient 2","Patient 3"), LBTEST = rep("Test A", 3), LBDTC = rep("2017-01-01", 3), LBORRES = c("5","BLQ","<7"), LBORRESU = rep("mg",3), LBSTRESC = c("5","BLQ","<7"), LBSTRESN = c(5,NA,NA), stringsAsFactors = FALSE ) check_lb_lbstresc_char(LB)
This check looks for missing standardized finding (LBSTRESN/LBSTRESC) when original finding (LBORRES) is not missing
check_lb_lbstresn_missing(LB, preproc = identity, ...)
check_lb_lbstresn_missing(LB, preproc = identity, ...)
LB |
Lab SDTM dataset with variables USUBJID, LBTESTCD, LBDTC, LBORRES, LBORRESU, LBSTRESN, LBSTRESC, VISIT (optional), LBSPID (optional) |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
boolean value if check failed or passed with 'msg' attribute if the test failed
Madeleine Ma
LB <- data.frame( USUBJID = c("Patient 1","Patient 2","Patient 3"), LBTEST = "Test A", LBTESTCD = "TA", LBDTC = "2017-01-01", LBORRES = c("5","6","7"), LBSTRESC = c("5","6","7"), LBORRESU = rep("mg",3), LBSTRESN = c(5,6,NA), stringsAsFactors=FALSE ) check_lb_lbstresn_missing(LB) LB$LBSTRESC[3] = "" check_lb_lbstresn_missing(LB) LB$LBSTRESC[1] = "" check_lb_lbstresn_missing(LB) LB$VISIT = "SCREENING" check_lb_lbstresn_missing(LB) LB$LBSPID= "FORMNAME-R:2/L:2XXXX" check_lb_lbstresn_missing(LB,preproc=roche_derive_rave_row) LB$LBSTRESN = NULL check_lb_lbstresn_missing(LB) LB$LBSTRESC = NULL check_lb_lbstresn_missing(LB)
LB <- data.frame( USUBJID = c("Patient 1","Patient 2","Patient 3"), LBTEST = "Test A", LBTESTCD = "TA", LBDTC = "2017-01-01", LBORRES = c("5","6","7"), LBSTRESC = c("5","6","7"), LBORRESU = rep("mg",3), LBSTRESN = c(5,6,NA), stringsAsFactors=FALSE ) check_lb_lbstresn_missing(LB) LB$LBSTRESC[3] = "" check_lb_lbstresn_missing(LB) LB$LBSTRESC[1] = "" check_lb_lbstresn_missing(LB) LB$VISIT = "SCREENING" check_lb_lbstresn_missing(LB) LB$LBSPID= "FORMNAME-R:2/L:2XXXX" check_lb_lbstresn_missing(LB,preproc=roche_derive_rave_row) LB$LBSTRESN = NULL check_lb_lbstresn_missing(LB) LB$LBSTRESC = NULL check_lb_lbstresn_missing(LB)
This check identifies records where original lab values (LBORRES) exist but standard lab units (LBSTRESU) are not populated, excluding qualitative results (LBMETHOD) and excluding records when LBTESTCD in ("PH" "SPGRAV")
check_lb_lbstresu(LB, preproc = identity, ...)
check_lb_lbstresu(LB, preproc = identity, ...)
LB |
Lab SDTM dataset with variables USUBJID, LBSTRESC, LBSTRESN, LBORRES, LBSTRESU, LBTESTCD, LBDTC, LBMETHOD (optional), LBSPID (optional), and VISIT (optional) |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
boolean value if check failed or passed with 'msg' attribute if the test failed
Iris Zhao
LB <- data.frame( USUBJID = 1:10, LBSTRESC = "5", LBSTRESN = 1:10, LBORRES = "5", LBSTRESU = "g/L", LBTESTCD = "ALB", LBDTC = 1:10, stringsAsFactors=FALSE ) check_lb_lbstresu(LB) LB$LBSTRESU[1]="" check_lb_lbstresu(LB) LB$LBSTRESU[2]="NA" check_lb_lbstresu(LB) LB$LBSTRESU[3]=NA check_lb_lbstresu(LB) LB$LBSPID= "FORMNAME-R:2/L:2XXXX" check_lb_lbstresu(LB,preproc=roche_derive_rave_row) LB$VISIT= "SCREENING" check_lb_lbstresu(LB) LB$LBSTRESU=NULL check_lb_lbstresu(LB)
LB <- data.frame( USUBJID = 1:10, LBSTRESC = "5", LBSTRESN = 1:10, LBORRES = "5", LBSTRESU = "g/L", LBTESTCD = "ALB", LBDTC = 1:10, stringsAsFactors=FALSE ) check_lb_lbstresu(LB) LB$LBSTRESU[1]="" check_lb_lbstresu(LB) LB$LBSTRESU[2]="NA" check_lb_lbstresu(LB) LB$LBSTRESU[3]=NA check_lb_lbstresu(LB) LB$LBSPID= "FORMNAME-R:2/L:2XXXX" check_lb_lbstresu(LB,preproc=roche_derive_rave_row) LB$VISIT= "SCREENING" check_lb_lbstresu(LB) LB$LBSTRESU=NULL check_lb_lbstresu(LB)
Check for missing month when lab specimen collection date (LBDTC) has known year and day
check_lb_missing_month(LB, preproc = identity, ...)
check_lb_missing_month(LB, preproc = identity, ...)
LB |
Laboratory data SDTM dataset with variables USUBJID,LBTEST,LBDTC,VISIT |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
boolean value if check failed or passed with 'msg' attribute if the test failed
Sara Bodach
LB <- data.frame( USUBJID = 1:4, LBTEST = c("TEST1","TEST2","TEST3","TEST3"), LBDTC = c("2017-01-01","2017-02-01","2017---01", "2017----01"), VISIT = c("VISIT1","VISIT2","VISIT3","VISIT3"), stringsAsFactors=FALSE ) check_lb_missing_month(LB) LB$LBSPID= "FORMNAME-R:2/L:2XXXX" check_lb_missing_month(LB,preproc=roche_derive_rave_row) LB$LBDTC = NULL check_lb_missing_month(LB)
LB <- data.frame( USUBJID = 1:4, LBTEST = c("TEST1","TEST2","TEST3","TEST3"), LBDTC = c("2017-01-01","2017-02-01","2017---01", "2017----01"), VISIT = c("VISIT1","VISIT2","VISIT3","VISIT3"), stringsAsFactors=FALSE ) check_lb_missing_month(LB) LB$LBSPID= "FORMNAME-R:2/L:2XXXX" check_lb_missing_month(LB,preproc=roche_derive_rave_row) LB$LBDTC = NULL check_lb_missing_month(LB)
This check looks for partial missing dates in medical history start and end dates. That is, with only the month missing while the year and day are known
check_mh_missing_month(MH, preproc = identity, ...)
check_mh_missing_month(MH, preproc = identity, ...)
MH |
Medical History SDTM dataset with variables USUBJID, MHTERM and MHSTDTC |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
Boolean value for whether the check passed or failed, with 'msg' attribute if the check failed
Chandra Mannem
MH <- data.frame(USUBJID = LETTERS[1:5], MHTERM = LETTERS[5:1], MHSTDTC = c("2014", NA, "2014-01", "", "2014---02"), stringsAsFactors = FALSE) check_mh_missing_month(MH) MH$MHSPID= "FORMNAME-R:2/L:2XXXX" check_mh_missing_month(MH,preproc=roche_derive_rave_row)
MH <- data.frame(USUBJID = LETTERS[1:5], MHTERM = LETTERS[5:1], MHSTDTC = c("2014", NA, "2014-01", "", "2014---02"), stringsAsFactors = FALSE) check_mh_missing_month(MH) MH$MHSPID= "FORMNAME-R:2/L:2XXXX" check_mh_missing_month(MH,preproc=roche_derive_rave_row)
This check looks for missing values in the MISPEC variable, which is required. This will be flagged in P21. This may reflect a mapping issue.
check_mi_mispec(MI)
check_mi_mispec(MI)
MI |
Microscopic Findings with variables USUBJID, MISPEC, MITESTCD, MIDTC |
boolean value if check failed or passed with 'msg' attribute if the test failed
Stella Banjo (HackR 2021)
MI <- data.frame( USUBJID = c("1","2", "3"), DOMAIN = "MI", MISEQ = c(1, 2, 1), MISPEC = c("","BLOCK SLIDE",NA), MITESTCD = "TESTCD1", MIDTC = "2020-01-01", stringAsFactors = FALSE ) check_mi_mispec(MI) ## No errors, MISPEC values present MI2 <- data.frame( USUBJID = c("1","2", "3"), DOMAIN = "MI", MISEQ = 1, MISPEC = c("SLIDE", "TUMOR TISSUE", "BLOCK SLIDE"), MITESTCD = "TESTCD1", MIDTC = "", stringsAsFactors = FALSE ) check_mi_mispec(MI2)
MI <- data.frame( USUBJID = c("1","2", "3"), DOMAIN = "MI", MISEQ = c(1, 2, 1), MISPEC = c("","BLOCK SLIDE",NA), MITESTCD = "TESTCD1", MIDTC = "2020-01-01", stringAsFactors = FALSE ) check_mi_mispec(MI) ## No errors, MISPEC values present MI2 <- data.frame( USUBJID = c("1","2", "3"), DOMAIN = "MI", MISEQ = 1, MISPEC = c("SLIDE", "TUMOR TISSUE", "BLOCK SLIDE"), MITESTCD = "TESTCD1", MIDTC = "", stringsAsFactors = FALSE ) check_mi_mispec(MI2)
This ophthalmology check is for BCVA 1m test. It checks three conditions: <1> BCVA test stops too late, meaning that lines were read after number of correct letters is <= 3. <2> BCVA test stops too early, meaning that further lines were not read when all numbers of correct letters is > 3. <3> BCVA total score is not correct, meaning that the sum of the number of correct at 1 meter doesn't match with what has been recorded in eCRF (BCVA Scores eCRF Page - C. Total number correct at 1m). Please note that this check only works with USUBJID, VISIT, VISITNUM, OELOC, OELAT combination has unique dates (OEDTC). If your datasets are having situations like 1) unscheduled visits happening on different dates or 2) BCVA TOTAL happens on a different date from BCVA row tests, such combinations will be removed from check. Please note that this check excludes forms BCVA Low Vision Test (BCV5), BCVA Scores (BCV7), BCVA Low Luminance Scores (BCVLL5), BCVA Combined Assessments (BCVAC), BCVA Low Luminance Combined Assessments (BCVACLL) before running check as these forms do not include Row numbers.
check_oe_bcva_1m_late_early_tot(OE)
check_oe_bcva_1m_late_early_tot(OE)
OE |
Ophtho Dataset with variables USUBJID, OESPID, OECAT, OESCAT, OETSTDTL, OESTRESN, OESTAT, OELOC, OELAT, OERESCAT, VISIT, VISITNUM, OEDTC, OEDY |
boolean value if check failed or passed with 'msg' attribute if the test failed
Rosemary Li (HackR 2021 Team Eye)
Other OPHTH:
check_ae_aelat()
,
check_cm_cmlat()
,
check_cm_cmlat_prior_ocular()
,
check_oe_bcva_4m_late_early_tot()
,
check_oe_bcva_4m_vs_1m_req()
,
check_oe_bcva_tot_mismatch()
,
check_oe_sc_lat_count_fingers()
,
check_pr_prlat()
,
check_sc_dm_eligcrit()
,
check_sc_dm_seyeselc()
OE_too_late <- data.frame( USUBJID = "1", OESPID = "FORMNAME-R:2/L:2XXXX", OECAT = "BEST CORRECTED VISUAL ACUITY", OETSTDTL = "TESTING DISTANCE: 1M", OESCAT = c(rep("", 6), "TOTAL"), OESTAT = "", OERESCAT = c("ROW 1 - SNELLEN 20/200", "ROW 2 - SNELLEN 20/160", "ROW 4 - SNELLEN 20/100", "ROW 3 - SNELLEN 20/125", "ROW 5 - SNELLEN 20/80", "ROW 6 - SNELLEN 20/63", ""), VISIT = "WEEK 1", VISITNUM = 5, OEDTC = "2020-06-01", OEDY = 8, OELOC = "EYE", OELAT = "LEFT", OESTRESN = c(5, 5, 5, 4, 3, 2, 24) ) check_oe_bcva_1m_late_early_tot(OE_too_late) OE_too_early <- data.frame( USUBJID = "1", OESPID = "FORMNAME-R:2/L:2XXXX", OECAT = "BEST CORRECTED VISUAL ACUITY", OETSTDTL = "TESTING DISTANCE: 1M", OESCAT = c(rep("", 5), "TOTAL"), OESTAT = "", OERESCAT = c("ROW 1 - SNELLEN 20/200", "ROW 2 - SNELLEN 20/160", "ROW 4 - SNELLEN 20/100", "ROW 3 - SNELLEN 20/125", "ROW 5 - SNELLEN 20/80", ""), VISIT = "WEEK 1", VISITNUM = 5, OEDTC = "2020-06-01", OEDY = 8, OELOC = "EYE", OELAT = "LEFT", OESTRESN = c(5, 5, 5, 4, 4, 23) ) check_oe_bcva_1m_late_early_tot(OE_too_early) OE_total_incorrect <- data.frame( USUBJID = "1", OESPID = "FORMNAME-R:2/L:2XXXX", OECAT = "BEST CORRECTED VISUAL ACUITY", OETSTDTL = "TESTING DISTANCE: 1M", OESCAT = c(rep("", 6), "TOTAL"), OESTAT = "", OERESCAT = c("ROW 1 - SNELLEN 20/200", "ROW 2 - SNELLEN 20/160", "ROW 4 - SNELLEN 20/100", "ROW 3 - SNELLEN 20/125", "ROW 5 - SNELLEN 20/80", "ROW 6 - SNELLEN 20/63", ""), VISIT = "WEEK 1", VISITNUM = 5, OEDTC = "2020-06-01", OEDY = 8, OELOC = "EYE", OELAT = "LEFT", OESTRESN = c(5, 5, 5, 4, 4, 2, 28) ) check_oe_bcva_1m_late_early_tot(OE_total_incorrect)
OE_too_late <- data.frame( USUBJID = "1", OESPID = "FORMNAME-R:2/L:2XXXX", OECAT = "BEST CORRECTED VISUAL ACUITY", OETSTDTL = "TESTING DISTANCE: 1M", OESCAT = c(rep("", 6), "TOTAL"), OESTAT = "", OERESCAT = c("ROW 1 - SNELLEN 20/200", "ROW 2 - SNELLEN 20/160", "ROW 4 - SNELLEN 20/100", "ROW 3 - SNELLEN 20/125", "ROW 5 - SNELLEN 20/80", "ROW 6 - SNELLEN 20/63", ""), VISIT = "WEEK 1", VISITNUM = 5, OEDTC = "2020-06-01", OEDY = 8, OELOC = "EYE", OELAT = "LEFT", OESTRESN = c(5, 5, 5, 4, 3, 2, 24) ) check_oe_bcva_1m_late_early_tot(OE_too_late) OE_too_early <- data.frame( USUBJID = "1", OESPID = "FORMNAME-R:2/L:2XXXX", OECAT = "BEST CORRECTED VISUAL ACUITY", OETSTDTL = "TESTING DISTANCE: 1M", OESCAT = c(rep("", 5), "TOTAL"), OESTAT = "", OERESCAT = c("ROW 1 - SNELLEN 20/200", "ROW 2 - SNELLEN 20/160", "ROW 4 - SNELLEN 20/100", "ROW 3 - SNELLEN 20/125", "ROW 5 - SNELLEN 20/80", ""), VISIT = "WEEK 1", VISITNUM = 5, OEDTC = "2020-06-01", OEDY = 8, OELOC = "EYE", OELAT = "LEFT", OESTRESN = c(5, 5, 5, 4, 4, 23) ) check_oe_bcva_1m_late_early_tot(OE_too_early) OE_total_incorrect <- data.frame( USUBJID = "1", OESPID = "FORMNAME-R:2/L:2XXXX", OECAT = "BEST CORRECTED VISUAL ACUITY", OETSTDTL = "TESTING DISTANCE: 1M", OESCAT = c(rep("", 6), "TOTAL"), OESTAT = "", OERESCAT = c("ROW 1 - SNELLEN 20/200", "ROW 2 - SNELLEN 20/160", "ROW 4 - SNELLEN 20/100", "ROW 3 - SNELLEN 20/125", "ROW 5 - SNELLEN 20/80", "ROW 6 - SNELLEN 20/63", ""), VISIT = "WEEK 1", VISITNUM = 5, OEDTC = "2020-06-01", OEDY = 8, OELOC = "EYE", OELAT = "LEFT", OESTRESN = c(5, 5, 5, 4, 4, 2, 28) ) check_oe_bcva_1m_late_early_tot(OE_total_incorrect)
This ophthalmology check is for BCVA 4m test. It checks three conditions: <1> BCVA test stops too late, meaning that lines were read after number of correct letters is <= 3. <2> BCVA test stops too early, meaning that further lines were not read when all numbers of correct letters is > 3. <3> BCVA total score is not correct, meaning that the sum of the number of correct at 4 meters doesn't match with what has been recorded in eCRF (BCVA Scores eCRF Page - A. Total number correct at 4m). Please note that this check only works with USUBJID, VISIT, VISITNUM, OELOC, OELAT combination has unique dates (OEDTC). If your datasets are having situations like 1) unscheduled visits happening on different dates or 2) BCVA TOTAL happens on a different date from BCVA row tests, such combinations will be removed from check. Please note that this check excludes forms BCVA Low Vision Test (BCV5), BCVA Scores (BCV7), BCVA Low Luminance Scores (BCVLL5), BCVA Combined Assessments (BCVAC), BCVA Low Luminance Combined Assessments (BCVACLL) before running check as these forms do not include Row numbers.
check_oe_bcva_4m_late_early_tot(OE)
check_oe_bcva_4m_late_early_tot(OE)
OE |
Ophtho Dataset with variables USUBJID, OESPID, OECAT, OESCAT, OETSTDTL, OESTRESN, OESTAT, OELOC, OELAT, OERESCAT, VISIT, VISITNUM, OEDTC, OEDY |
boolean value if check failed or passed with 'msg' attribute if the test failed
Rosemary Li (HackR 2021 Team Eye)
Other OPHTH:
check_ae_aelat()
,
check_cm_cmlat()
,
check_cm_cmlat_prior_ocular()
,
check_oe_bcva_1m_late_early_tot()
,
check_oe_bcva_4m_vs_1m_req()
,
check_oe_bcva_tot_mismatch()
,
check_oe_sc_lat_count_fingers()
,
check_pr_prlat()
,
check_sc_dm_eligcrit()
,
check_sc_dm_seyeselc()
OE_too_late <- data.frame( USUBJID = "1", OESPID = "FORMNAME-R:2/L:2XXXX", OECAT = "BEST CORRECTED VISUAL ACUITY", OETSTDTL = "TESTING DISTANCE: 4M", OESCAT = c(rep("", 6), "TOTAL"), OESTAT = "", OERESCAT = c("ROW 1 - SNELLEN 20/200", "ROW 2 - SNELLEN 20/160", "ROW 4 - SNELLEN 20/100", "ROW 3 - SNELLEN 20/125", "ROW 5 - SNELLEN 20/80", "ROW 6 - SNELLEN 20/63", ""), VISIT = "WEEK 1", VISITNUM = 5, OEDTC = "2020-06-01", OEDY = 8, OELOC = "EYE", OELAT = "LEFT", OESTRESN = c(5, 5, 5, 4, 3, 2, 24) ) check_oe_bcva_4m_late_early_tot(OE_too_late) OE_too_early <- data.frame( USUBJID = "1", OESPID = "FORMNAME-R:2/L:2XXXX", OECAT = "BEST CORRECTED VISUAL ACUITY", OETSTDTL = "TESTING DISTANCE: 4M", OESCAT = c(rep("", 6), "TOTAL"), OESTAT = "", OERESCAT = c("ROW 1 - SNELLEN 20/200", "ROW 2 - SNELLEN 20/160", "ROW 4 - SNELLEN 20/100", "ROW 3 - SNELLEN 20/125", "ROW 5 - SNELLEN 20/80", "ROW 6 - SNELLEN 20/63", ""), VISIT = "WEEK 1", VISITNUM = 5, OEDTC = "2020-06-01", OEDY = 8, OELOC = "EYE", OELAT = "LEFT", OESTRESN = c(5, 5, 5, 4, 4, 5, 28) ) check_oe_bcva_4m_late_early_tot(OE_too_early) OE_total_incorrect <- data.frame( USUBJID = "1", OESPID = "FORMNAME-R:2/L:2XXXX", OECAT = "BEST CORRECTED VISUAL ACUITY", OETSTDTL = "TESTING DISTANCE: 4M", OESCAT = c(rep("", 6), "TOTAL"), OESTAT = "", OERESCAT = c("ROW 1 - SNELLEN 20/200", "ROW 2 - SNELLEN 20/160", "ROW 4 - SNELLEN 20/100", "ROW 3 - SNELLEN 20/125", "ROW 5 - SNELLEN 20/80", "ROW 6 - SNELLEN 20/63", ""), VISIT = "WEEK 1", VISITNUM = 5, OEDTC = "2020-06-01", OEDY = 8, OELOC = "EYE", OELAT = "LEFT", OESTRESN = c(5, 5, 5, 4, 4, 2, 28) ) check_oe_bcva_4m_late_early_tot(OE_total_incorrect)
OE_too_late <- data.frame( USUBJID = "1", OESPID = "FORMNAME-R:2/L:2XXXX", OECAT = "BEST CORRECTED VISUAL ACUITY", OETSTDTL = "TESTING DISTANCE: 4M", OESCAT = c(rep("", 6), "TOTAL"), OESTAT = "", OERESCAT = c("ROW 1 - SNELLEN 20/200", "ROW 2 - SNELLEN 20/160", "ROW 4 - SNELLEN 20/100", "ROW 3 - SNELLEN 20/125", "ROW 5 - SNELLEN 20/80", "ROW 6 - SNELLEN 20/63", ""), VISIT = "WEEK 1", VISITNUM = 5, OEDTC = "2020-06-01", OEDY = 8, OELOC = "EYE", OELAT = "LEFT", OESTRESN = c(5, 5, 5, 4, 3, 2, 24) ) check_oe_bcva_4m_late_early_tot(OE_too_late) OE_too_early <- data.frame( USUBJID = "1", OESPID = "FORMNAME-R:2/L:2XXXX", OECAT = "BEST CORRECTED VISUAL ACUITY", OETSTDTL = "TESTING DISTANCE: 4M", OESCAT = c(rep("", 6), "TOTAL"), OESTAT = "", OERESCAT = c("ROW 1 - SNELLEN 20/200", "ROW 2 - SNELLEN 20/160", "ROW 4 - SNELLEN 20/100", "ROW 3 - SNELLEN 20/125", "ROW 5 - SNELLEN 20/80", "ROW 6 - SNELLEN 20/63", ""), VISIT = "WEEK 1", VISITNUM = 5, OEDTC = "2020-06-01", OEDY = 8, OELOC = "EYE", OELAT = "LEFT", OESTRESN = c(5, 5, 5, 4, 4, 5, 28) ) check_oe_bcva_4m_late_early_tot(OE_too_early) OE_total_incorrect <- data.frame( USUBJID = "1", OESPID = "FORMNAME-R:2/L:2XXXX", OECAT = "BEST CORRECTED VISUAL ACUITY", OETSTDTL = "TESTING DISTANCE: 4M", OESCAT = c(rep("", 6), "TOTAL"), OESTAT = "", OERESCAT = c("ROW 1 - SNELLEN 20/200", "ROW 2 - SNELLEN 20/160", "ROW 4 - SNELLEN 20/100", "ROW 3 - SNELLEN 20/125", "ROW 5 - SNELLEN 20/80", "ROW 6 - SNELLEN 20/63", ""), VISIT = "WEEK 1", VISITNUM = 5, OEDTC = "2020-06-01", OEDY = 8, OELOC = "EYE", OELAT = "LEFT", OESTRESN = c(5, 5, 5, 4, 4, 2, 28) ) check_oe_bcva_4m_late_early_tot(OE_total_incorrect)
This ophthalmology function is to check if BCVA 1m test is done per BCVA 4m result. Patient, Visits, Laterality where Low Vision Tests were done are excluded from this check. 1> If 4m test total <= 19 and 1m test is not done. 2> If 4m test total >= 20 and 1m test is performed Above two conditions will be outputted in the final result data frame, which includes USUBJID, VISIT, OEDTC, OELAT, BCVA_4M_TOTAL, BCVA_1M_TOTAL, ISSUE. Please note that this check will assume that the BCVA 1m and 4m total are accurate and they happen on the same day. If they are happening on different dates, such records will be removed and not checked.
check_oe_bcva_4m_vs_1m_req(OE)
check_oe_bcva_4m_vs_1m_req(OE)
OE |
Ophtho Dataset with variables USUBJID, OECAT, OESCAT, OETSTDTL, OESTRESN, OESTAT, OELAT, OERESCAT, VISIT, OEDTC, OEDY |
boolean value if check failed or passed with 'msg' attribute if the test failed
Rosemary Li (HackR 2021 Team Eye)
Other OPHTH:
check_ae_aelat()
,
check_cm_cmlat()
,
check_cm_cmlat_prior_ocular()
,
check_oe_bcva_1m_late_early_tot()
,
check_oe_bcva_4m_late_early_tot()
,
check_oe_bcva_tot_mismatch()
,
check_oe_sc_lat_count_fingers()
,
check_pr_prlat()
,
check_sc_dm_eligcrit()
,
check_sc_dm_seyeselc()
OE_1m_done <- data.frame( USUBJID = "1", OECAT = "BEST CORRECTED VISUAL ACUITY", OETSTDTL = c(rep("TESTING DISTANCE: 4M", 4), rep("TESTING DISTANCE: 1M", 3)), OESCAT = c(rep("", 3), "TOTAL", rep("", 2), "TOTAL"), OESTAT = rep("", 7), OERESCAT = c("ROW 1 - SNELLEN 20/200", "ROW 2 - SNELLEN 20/160", "ROW 3 - SNELLEN 20/125", "", "ROW 1 - SNELLEN 20/200", "ROW 2 - SNELLEN 20/160", ""), VISIT = "WEEK 1", VISITNUM = 5, OEDTC = "2020-06-01", OEDY = 8, OELOC = "EYE", OELAT = "LEFT", OESTRESN = c(9, 9, 3, 21, 3, 2, 5) ) check_oe_bcva_4m_vs_1m_req(OE_1m_done) OE_1m_not_done <- data.frame( USUBJID = "1", OECAT = "BEST CORRECTED VISUAL ACUITY", OETSTDTL = "TESTING DISTANCE: 4M", OESCAT = c(rep("", 3), "TOTAL"), OESTAT = "", OERESCAT = c("ROW 1 - SNELLEN 20/200", "ROW 2 - SNELLEN 20/160", "ROW 3 - SNELLEN 20/125", ""), VISIT = "WEEK 1", VISITNUM = 5, OEDTC = "2020-06-01", OEDY = 8, OELOC = "EYE", OELAT = "LEFT", OESTRESN = c(5, 5, 2, 12) ) check_oe_bcva_4m_vs_1m_req(OE_1m_not_done)
OE_1m_done <- data.frame( USUBJID = "1", OECAT = "BEST CORRECTED VISUAL ACUITY", OETSTDTL = c(rep("TESTING DISTANCE: 4M", 4), rep("TESTING DISTANCE: 1M", 3)), OESCAT = c(rep("", 3), "TOTAL", rep("", 2), "TOTAL"), OESTAT = rep("", 7), OERESCAT = c("ROW 1 - SNELLEN 20/200", "ROW 2 - SNELLEN 20/160", "ROW 3 - SNELLEN 20/125", "", "ROW 1 - SNELLEN 20/200", "ROW 2 - SNELLEN 20/160", ""), VISIT = "WEEK 1", VISITNUM = 5, OEDTC = "2020-06-01", OEDY = 8, OELOC = "EYE", OELAT = "LEFT", OESTRESN = c(9, 9, 3, 21, 3, 2, 5) ) check_oe_bcva_4m_vs_1m_req(OE_1m_done) OE_1m_not_done <- data.frame( USUBJID = "1", OECAT = "BEST CORRECTED VISUAL ACUITY", OETSTDTL = "TESTING DISTANCE: 4M", OESCAT = c(rep("", 3), "TOTAL"), OESTAT = "", OERESCAT = c("ROW 1 - SNELLEN 20/200", "ROW 2 - SNELLEN 20/160", "ROW 3 - SNELLEN 20/125", ""), VISIT = "WEEK 1", VISITNUM = 5, OEDTC = "2020-06-01", OEDY = 8, OELOC = "EYE", OELAT = "LEFT", OESTRESN = c(5, 5, 2, 12) ) check_oe_bcva_4m_vs_1m_req(OE_1m_not_done)
This ophthalmology check looks for any mismatch between the Derived Best Corrected Visual Acuity (BCVA) Total Score & reported Total BCVA Score from Data based on OETESTCD = "LOGSCORE" for older studies or OETESTCD = "VACSCORE" for newer studies
check_oe_bcva_tot_mismatch(OE)
check_oe_bcva_tot_mismatch(OE)
OE |
Ophtho Dataset with variables USUBJID, OETESTCD, OECAT, OESCAT, OETSTDTL, OESTRESN, OESTAT (if present), OELAT, VISIT, OEDTC |
boolean value if check failed or passed with 'msg' attribute if the test failed
Monarch Shah (HackR 2021 Team Eye)
Other OPHTH:
check_ae_aelat()
,
check_cm_cmlat()
,
check_cm_cmlat_prior_ocular()
,
check_oe_bcva_1m_late_early_tot()
,
check_oe_bcva_4m_late_early_tot()
,
check_oe_bcva_4m_vs_1m_req()
,
check_oe_sc_lat_count_fingers()
,
check_pr_prlat()
,
check_sc_dm_eligcrit()
,
check_sc_dm_seyeselc()
#Using Old Standard, FAIL Case (4m <=19, so 4m + 1m to match with Rave Total) OE <- data.frame( USUBJID = 1, OETESTCD = c("NUMLCOR", "NUMLCOR", "LCORCON", "LOGSCORE"), OECAT = rep("BEST CORRECTED VISUAL ACUITY", 4), OESCAT = c("TOTAL", "TOTAL","", ""), OETSTDTL = c("TESTING DISTANCE: 4M", "TESTING DISTANCE: 1M", "", ""), OESTRESN = c(18, 0, 30, 48), OESTAT= rep("", 4), OELOC = rep("EYE", 4), OELAT = rep("LEFT", 4), VISIT = rep("SCREENING", 4), VISITNUM = rep(99, 4), OEDTC = rep("2021-05-19", 4), OEDY = rep(1, 4), stringsAsFactors = FALSE) check_oe_bcva_tot_mismatch(OE) #Using New Standard, PASS Case OE <- data.frame( USUBJID = 1, OETESTCD = c("NUMLCOR", "NUMLCOR", "LCORCON", "VACSCORE"), OECAT = rep("BEST CORRECTED VISUAL ACUITY", 4), OESCAT = c("NORMAL LIGHTING SCORE", "NORMAL LIGHTING SCORE","", ""), OETSTDTL = c("TESTING DISTANCE: 4M", "TESTING DISTANCE: 1M", "", ""), OESTRESN = c(22, 0, 30, 52), OESTAT= rep("", 4), OELOC = rep("EYE", 4), OELAT = rep("LEFT", 4), VISIT = rep("SCREENING", 4), VISITNUM = rep(99, 4), OEDTC = rep("2021-05-19", 4), OEDY = rep(1, 4), stringsAsFactors = FALSE) check_oe_bcva_tot_mismatch(OE) #Using New Standard, FAIL Case (Total 4m + 1m (As 4m <=19) not equal to CRF Total Score) OE <- data.frame( USUBJID = 1, OETESTCD = c("NUMLCOR", "NUMLCOR", "LCORCON", "VACSCORE"), OECAT = "BEST CORRECTED VISUAL ACUITY", OESCAT = c("NORMAL LIGHTING SCORE", "NORMAL LIGHTING SCORE","", ""), OETSTDTL = c("TESTING DISTANCE: 4M", "TESTING DISTANCE: 1M", "", ""), OESTRESN = c(17, 12, 0, 27), OESTAT= "", OELOC = "EYE", OELAT = "LEFT", VISIT = "SCREENING", VISITNUM = 99, OEDTC = "2021-05-19", OEDY = 1, stringsAtors = FALSE) check_oe_bcva_tot_mismatch(OE) #FAIL Case without optional variable, OESTAT OE$OESTAT <- NULL check_oe_bcva_tot_mismatch(OE) #missing required variable, OETESTCD OE$OETESTCD <- NULL check_oe_bcva_tot_mismatch(OE)
#Using Old Standard, FAIL Case (4m <=19, so 4m + 1m to match with Rave Total) OE <- data.frame( USUBJID = 1, OETESTCD = c("NUMLCOR", "NUMLCOR", "LCORCON", "LOGSCORE"), OECAT = rep("BEST CORRECTED VISUAL ACUITY", 4), OESCAT = c("TOTAL", "TOTAL","", ""), OETSTDTL = c("TESTING DISTANCE: 4M", "TESTING DISTANCE: 1M", "", ""), OESTRESN = c(18, 0, 30, 48), OESTAT= rep("", 4), OELOC = rep("EYE", 4), OELAT = rep("LEFT", 4), VISIT = rep("SCREENING", 4), VISITNUM = rep(99, 4), OEDTC = rep("2021-05-19", 4), OEDY = rep(1, 4), stringsAsFactors = FALSE) check_oe_bcva_tot_mismatch(OE) #Using New Standard, PASS Case OE <- data.frame( USUBJID = 1, OETESTCD = c("NUMLCOR", "NUMLCOR", "LCORCON", "VACSCORE"), OECAT = rep("BEST CORRECTED VISUAL ACUITY", 4), OESCAT = c("NORMAL LIGHTING SCORE", "NORMAL LIGHTING SCORE","", ""), OETSTDTL = c("TESTING DISTANCE: 4M", "TESTING DISTANCE: 1M", "", ""), OESTRESN = c(22, 0, 30, 52), OESTAT= rep("", 4), OELOC = rep("EYE", 4), OELAT = rep("LEFT", 4), VISIT = rep("SCREENING", 4), VISITNUM = rep(99, 4), OEDTC = rep("2021-05-19", 4), OEDY = rep(1, 4), stringsAsFactors = FALSE) check_oe_bcva_tot_mismatch(OE) #Using New Standard, FAIL Case (Total 4m + 1m (As 4m <=19) not equal to CRF Total Score) OE <- data.frame( USUBJID = 1, OETESTCD = c("NUMLCOR", "NUMLCOR", "LCORCON", "VACSCORE"), OECAT = "BEST CORRECTED VISUAL ACUITY", OESCAT = c("NORMAL LIGHTING SCORE", "NORMAL LIGHTING SCORE","", ""), OETSTDTL = c("TESTING DISTANCE: 4M", "TESTING DISTANCE: 1M", "", ""), OESTRESN = c(17, 12, 0, 27), OESTAT= "", OELOC = "EYE", OELAT = "LEFT", VISIT = "SCREENING", VISITNUM = 99, OEDTC = "2021-05-19", OEDY = 1, stringsAtors = FALSE) check_oe_bcva_tot_mismatch(OE) #FAIL Case without optional variable, OESTAT OE$OESTAT <- NULL check_oe_bcva_tot_mismatch(OE) #missing required variable, OETESTCD OE$OETESTCD <- NULL check_oe_bcva_tot_mismatch(OE)
Check If Post Treatment Count Fingers in Study Eye is done on the actual Study eye by comparing laterality from OE domain with SC domain. Check is ignored if Post Treatment Count Fingers is not collected in study as it is quite common for EP studies
check_oe_sc_lat_count_fingers(OE, SC)
check_oe_sc_lat_count_fingers(OE, SC)
OE |
Ophthalmic Examination Dataset for Ophtho Study with variables USUBJID, OECAT, OELAT, VISIT, OEDTC, OETEST, OELOC, OESTAT (if present) |
SC |
Subject Characteristics Dataset for Ophtho Study with variables USUBJID, SCTEST, SCTESTCD, SCCAT, SCSTRESC, SCDTC |
boolean value if check failed or passed with 'msg' attribute if the test failed
Monarch Shah (HackR 2021 Team Eye)
Other OPHTH:
check_ae_aelat()
,
check_cm_cmlat()
,
check_cm_cmlat_prior_ocular()
,
check_oe_bcva_1m_late_early_tot()
,
check_oe_bcva_4m_late_early_tot()
,
check_oe_bcva_4m_vs_1m_req()
,
check_oe_bcva_tot_mismatch()
,
check_pr_prlat()
,
check_sc_dm_eligcrit()
,
check_sc_dm_seyeselc()
sc <- data.frame(USUBJID = c(1,1,1,2,2,2), SCTEST = c("Eye Meeting Eligibility Criteria", "Focus of Study-Specific Interest", " ", "Eye Meeting Eligibility Criteria", "Focus of Study-Specific Interest", " "), SCTESTCD = c("ELIGEYE", "FOCID", "", "ELIGEYE", "FOCID", ""), SCCAT = c("STUDY EYE SELECTION", "STUDY EYE SELECTION", "", "STUDY EYE SELECTION", "STUDY EYE SELECTION", ""), SCSTRESC = c("LEFT", "OS", "", "RIGHT", "OD", ""), SCDTC = rep("2021-01-01", 6), stringsAsFactors = FALSE) oe <- data.frame(USUBJID = c(1,1,1,1,1,2,2,2,2,2,2), OECAT = rep("SAFETY ASSESSMENT OF LOW VISION", 11), OELOC = rep("Eye", 11), OELAT = c("LEFT", "Left", "left", "LEFT", "LEFT", "RIGHT", "right", "right", "RIGHT", "RIGHT", "right"), OEDY = c(1, 28, 56, 84, 112, 1, 28, 56, 84, 112, 140), VISIT = c("Week 1", "Week 4", "Week 8", "Week 12", "Week 16", "Week 1", "Week 4", "Week 8", "Week 12", "Week 16", "Week 20"), OEDTC = c("2021-01-01", "2021-02-01", "2021-03-01", "2021-04-01", "2021-05-01", "2021-01-01", "2021-02-01", "2021-03-01", "2021-04-01", "2021-05-01", "2021-06-01"), OETEST = c("A", "B", "C", "D", "E", "A", "B", "C", "D", "E", "F"), stringsAsFactors=FALSE) check_oe_sc_lat_count_fingers(SC=sc, OE=oe) sc <- data.frame(USUBJID = c(1,1,1,2,2,2), SCTEST = c("Eye Meeting Eligibility Criteria", "Focus of Study-Specific Interest", " ", "Eye Meeting Eligibility Criteria", "Focus of Study-Specific Interest", " "), SCTESTCD = c("ELIGEYE", "FOCID", "", "ELIGEYE", "FOCID", ""), SCCAT = c("STUDY EYE SELECTION", "STUDY EYE SELECTION", "", "STUDY EYE SELECTION", "STUDY EYE SELECTION", ""), SCSTRESC = c("LEFT", "OS", "", "RIGHT", "OD", ""), SCDTC = rep("2021-01-01", 6), stringsAsFactors = FALSE) oe <- data.frame(USUBJID = c(1,1,1,1,1,2,2,2,2,2,2), OECAT = rep("SAFETY ASSESSMENT OF LOW VISION", 11), OELOC = rep("Eye", 11), OELAT = c("LEFT", "Left", "left", "LEFT", "right", "RIGHT", "right", "right", "RIGHT", "RIGHT", "left"), OEDY = c(1, 28, 56, 84, 112, 1, 28, 56, 84, 112, 140), VISIT = c("Week 1", "Week 4", "Week 8", "Week 12", "Week 16", "Week 1", "Week 4", "Week 8", "Week 12", "Week 16", "Week 20"), OEDTC = c("2021-01-01", "2021-02-01", "2021-03-01", "2021-04-01", "2021-05-01", "2021-01-01", "2021-02-01", "2021-03-01", "2021-04-01", "2021-05-01", "2021-06-01"), OETEST = c("A", "B", "C", "D", "E", "A", "B", "C", "D", "E", "F"), stringsAsFactors=FALSE) check_oe_sc_lat_count_fingers(SC=sc, OE=oe) sc <- data.frame(USUBJID = c(1,1,1,2,2,2,3), SCTEST = c("Eye Meeting Eligibility Criteria", "Focus of Study-Specific Interest", " ", "Eye Meeting Eligibility Criteria", "Focus of Study-Specific Interest", " ", "Focus of Study-Specific Interest"), SCTESTCD = c("ELIGEYE", "FOCID", "", "ELIGEYE", "FOCID", "", "FOCID"), SCCAT = c("STUDY EYE SELECTION", "STUDY EYE SELECTION", "", "STUDY EYE SELECTION", "STUDY EYE SELECTION", "", "STUDY EYE SELECTION"), SCSTRESC = c("LEFT", "OS", "", "RIGHT", "OD", "", "OS"), SCDTC = "2021-01-01", stringsAsFactors = FALSE) oe <- data.frame(USUBJID = c(1,1,1,1,1,2,2,2,2,2,2), OESTAT = c("","","","","","","","","","", "not DONE"), OECAT = "SAFETY ASSESSMENT OF LOW VISION", OELOC = "Eye", OELAT = c("LEFT", "Left", "left", "LEFT", "right", "RIGHT", "right", "right", "RIGHT", "RIGHT", "left"), OEDY = c(1, 28, 56, 84, 112, 1, 28, 56, 84, 112, 140), VISIT = c("Week 1", "Week 4", "Week 8", "Week 12", "Week 16", "Week 1", "Week 4", "Week 8", "Week 12", "Week 16", "Week 20"), OEDTC = c("2021-01-01", "2021-02-01", "2021-03-01", "2021-04-01", "2021-05-01", "2021-01-01", "2021-02-01", "2021-03-01", "2021-04-01", "2021-05-01", "2021-06-01"), OETEST = c("A", "B", "C", "D", "E", "A", "B", "C", "D", "E", "F"), stringsAsFactors=FALSE) check_oe_sc_lat_count_fingers(SC=sc, OE=oe)
sc <- data.frame(USUBJID = c(1,1,1,2,2,2), SCTEST = c("Eye Meeting Eligibility Criteria", "Focus of Study-Specific Interest", " ", "Eye Meeting Eligibility Criteria", "Focus of Study-Specific Interest", " "), SCTESTCD = c("ELIGEYE", "FOCID", "", "ELIGEYE", "FOCID", ""), SCCAT = c("STUDY EYE SELECTION", "STUDY EYE SELECTION", "", "STUDY EYE SELECTION", "STUDY EYE SELECTION", ""), SCSTRESC = c("LEFT", "OS", "", "RIGHT", "OD", ""), SCDTC = rep("2021-01-01", 6), stringsAsFactors = FALSE) oe <- data.frame(USUBJID = c(1,1,1,1,1,2,2,2,2,2,2), OECAT = rep("SAFETY ASSESSMENT OF LOW VISION", 11), OELOC = rep("Eye", 11), OELAT = c("LEFT", "Left", "left", "LEFT", "LEFT", "RIGHT", "right", "right", "RIGHT", "RIGHT", "right"), OEDY = c(1, 28, 56, 84, 112, 1, 28, 56, 84, 112, 140), VISIT = c("Week 1", "Week 4", "Week 8", "Week 12", "Week 16", "Week 1", "Week 4", "Week 8", "Week 12", "Week 16", "Week 20"), OEDTC = c("2021-01-01", "2021-02-01", "2021-03-01", "2021-04-01", "2021-05-01", "2021-01-01", "2021-02-01", "2021-03-01", "2021-04-01", "2021-05-01", "2021-06-01"), OETEST = c("A", "B", "C", "D", "E", "A", "B", "C", "D", "E", "F"), stringsAsFactors=FALSE) check_oe_sc_lat_count_fingers(SC=sc, OE=oe) sc <- data.frame(USUBJID = c(1,1,1,2,2,2), SCTEST = c("Eye Meeting Eligibility Criteria", "Focus of Study-Specific Interest", " ", "Eye Meeting Eligibility Criteria", "Focus of Study-Specific Interest", " "), SCTESTCD = c("ELIGEYE", "FOCID", "", "ELIGEYE", "FOCID", ""), SCCAT = c("STUDY EYE SELECTION", "STUDY EYE SELECTION", "", "STUDY EYE SELECTION", "STUDY EYE SELECTION", ""), SCSTRESC = c("LEFT", "OS", "", "RIGHT", "OD", ""), SCDTC = rep("2021-01-01", 6), stringsAsFactors = FALSE) oe <- data.frame(USUBJID = c(1,1,1,1,1,2,2,2,2,2,2), OECAT = rep("SAFETY ASSESSMENT OF LOW VISION", 11), OELOC = rep("Eye", 11), OELAT = c("LEFT", "Left", "left", "LEFT", "right", "RIGHT", "right", "right", "RIGHT", "RIGHT", "left"), OEDY = c(1, 28, 56, 84, 112, 1, 28, 56, 84, 112, 140), VISIT = c("Week 1", "Week 4", "Week 8", "Week 12", "Week 16", "Week 1", "Week 4", "Week 8", "Week 12", "Week 16", "Week 20"), OEDTC = c("2021-01-01", "2021-02-01", "2021-03-01", "2021-04-01", "2021-05-01", "2021-01-01", "2021-02-01", "2021-03-01", "2021-04-01", "2021-05-01", "2021-06-01"), OETEST = c("A", "B", "C", "D", "E", "A", "B", "C", "D", "E", "F"), stringsAsFactors=FALSE) check_oe_sc_lat_count_fingers(SC=sc, OE=oe) sc <- data.frame(USUBJID = c(1,1,1,2,2,2,3), SCTEST = c("Eye Meeting Eligibility Criteria", "Focus of Study-Specific Interest", " ", "Eye Meeting Eligibility Criteria", "Focus of Study-Specific Interest", " ", "Focus of Study-Specific Interest"), SCTESTCD = c("ELIGEYE", "FOCID", "", "ELIGEYE", "FOCID", "", "FOCID"), SCCAT = c("STUDY EYE SELECTION", "STUDY EYE SELECTION", "", "STUDY EYE SELECTION", "STUDY EYE SELECTION", "", "STUDY EYE SELECTION"), SCSTRESC = c("LEFT", "OS", "", "RIGHT", "OD", "", "OS"), SCDTC = "2021-01-01", stringsAsFactors = FALSE) oe <- data.frame(USUBJID = c(1,1,1,1,1,2,2,2,2,2,2), OESTAT = c("","","","","","","","","","", "not DONE"), OECAT = "SAFETY ASSESSMENT OF LOW VISION", OELOC = "Eye", OELAT = c("LEFT", "Left", "left", "LEFT", "right", "RIGHT", "right", "right", "RIGHT", "RIGHT", "left"), OEDY = c(1, 28, 56, 84, 112, 1, 28, 56, 84, 112, 140), VISIT = c("Week 1", "Week 4", "Week 8", "Week 12", "Week 16", "Week 1", "Week 4", "Week 8", "Week 12", "Week 16", "Week 20"), OEDTC = c("2021-01-01", "2021-02-01", "2021-03-01", "2021-04-01", "2021-05-01", "2021-01-01", "2021-02-01", "2021-03-01", "2021-04-01", "2021-05-01", "2021-06-01"), OETEST = c("A", "B", "C", "D", "E", "A", "B", "C", "D", "E", "F"), stringsAsFactors=FALSE) check_oe_sc_lat_count_fingers(SC=sc, OE=oe)
This check looks for partial missing dates in PR Procedures start date and end date, if end date exists. If the day of the month is known, the month should be known.
check_pr_missing_month(PR, preproc = identity, ...)
check_pr_missing_month(PR, preproc = identity, ...)
PR |
Procedures SDTM dataset with variables USUBJID, PRTRT, PRSTDTC, PRENDTC (optional), PRSPID (optional) |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
boolean value if check failed or passed with 'msg' attribute if the test failed
PR <- data.frame( USUBJID = 1:3, PRTRT = c("Surgery Name","Procedure Name","Procedure"), PRSTDTC = c("2017-01-01","2017---01","2017-01-02"), PRENDTC = c("2017-02-01","2017-03-01","2017---01"), PRSPID = "/F:SURG-D:12345-R:1", PRCAT = "Form 1", stringsAsFactors=FALSE ) check_pr_missing_month(PR) check_pr_missing_month(PR,preproc=roche_derive_rave_row) PR$PRENDTC = NULL check_pr_missing_month(PR)
PR <- data.frame( USUBJID = 1:3, PRTRT = c("Surgery Name","Procedure Name","Procedure"), PRSTDTC = c("2017-01-01","2017---01","2017-01-02"), PRENDTC = c("2017-02-01","2017-03-01","2017---01"), PRSPID = "/F:SURG-D:12345-R:1", PRCAT = "Form 1", stringsAsFactors=FALSE ) check_pr_missing_month(PR) check_pr_missing_month(PR,preproc=roche_derive_rave_row) PR$PRENDTC = NULL check_pr_missing_month(PR)
This check assesses observations where PRCAT contains the word OCULAR and flags records with missing/inconsistent laterality
check_pr_prlat(PR, preproc = identity, ...)
check_pr_prlat(PR, preproc = identity, ...)
PR |
Procedure/Surgery Dataset for Ophtho Study with variables USUBJID, PRCAT, PRLAT, PRTRT, PROCCUR, PRPRESP, PRSPID (if Present), PRSTDTC (if Present), PRINDC (if Present) |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
boolean value if check failed or passed with 'msg' attribute if the test failed
Tim Barnett (HackR 2021 Team Eye) Monarch Shah (Added Concurrent Ocular Procedure in this check) (copied from check_cm_cmlat)
Other OPHTH:
check_ae_aelat()
,
check_cm_cmlat()
,
check_cm_cmlat_prior_ocular()
,
check_oe_bcva_1m_late_early_tot()
,
check_oe_bcva_4m_late_early_tot()
,
check_oe_bcva_4m_vs_1m_req()
,
check_oe_bcva_tot_mismatch()
,
check_oe_sc_lat_count_fingers()
,
check_sc_dm_eligcrit()
,
check_sc_dm_seyeselc()
PR <- data.frame( USUBJID = 1:5, PRCAT = "PRIOR OCULAR SURGERIES AND PROCEDURES", PRSTDTC = 1:5, PRLAT = c("Left", "","Bilateral", "", ""), PRTRT = c("A", "B", "A", "B", "A"), PROCCUR = c("Y", "N", "N", "Y", "Y"), PRPRESP = "Y", PRSPID = "FORMNAME-R:2/L:2XXXX", stringsAsFactors = FALSE) check_pr_prlat(PR,preproc=roche_derive_rave_row) PR <- data.frame( USUBJID = 1:5, PRCAT = "CONCURRENT OCULAR PROCEDURE", PRSTDTC = 1:5, PRLAT = c("Left", "LEFT","Bilateral", "RIGHT", "RIgHT"), PRTRT = c("A", "B", "A", "B", "A"), PROCCUR = NA, PRPRESP = NA, stringsAsFactors = FALSE) check_pr_prlat(PR) PR <- data.frame( USUBJID = 1:5, PRCAT = "CONCURRENT OCULAR PROCEDURE", PRSTDTC = 1:5, PRLAT = c("Left", "LEFT","Bilateral", "RIGHT", ""), PRTRT = c("A", "B", "A", "B", "A"), PROCCUR = NA, PRPRESP = NA, stringsAsFactors = FALSE) check_pr_prlat(PR) PR <- data.frame( USUBJID = 1:5, PRCAT = "CONCURRENT OCULAR PROCEDURE", PRSTDTC = 1:5, PRLAT = c("Left", "","Bilateral", "RIGHT", ""), PRTRT = c("A", "B", "A", "B", "A"), PROCCUR = c("Y", "N", "N", "Y", "Y"), PRPRESP = "Y", stringsAsFactors = FALSE) check_pr_prlat(PR) PR <- data.frame( USUBJID = 1:5, PRCAT = c(rep("CONCURRENT NON-OCULAR PROCEDURE",3),rep("CONCURRENT OCULAR PROCEDURE",2)), PRSTDTC = 1:5, PRLAT = c("", "","", "RIGHT", ""), PRTRT = c("A", "B", "A", "B", "A"), PROCCUR = c("Y", "N", "N", "Y", "Y"), PRPRESP = "Y", stringsAsFactors = FALSE) check_pr_prlat(PR)
PR <- data.frame( USUBJID = 1:5, PRCAT = "PRIOR OCULAR SURGERIES AND PROCEDURES", PRSTDTC = 1:5, PRLAT = c("Left", "","Bilateral", "", ""), PRTRT = c("A", "B", "A", "B", "A"), PROCCUR = c("Y", "N", "N", "Y", "Y"), PRPRESP = "Y", PRSPID = "FORMNAME-R:2/L:2XXXX", stringsAsFactors = FALSE) check_pr_prlat(PR,preproc=roche_derive_rave_row) PR <- data.frame( USUBJID = 1:5, PRCAT = "CONCURRENT OCULAR PROCEDURE", PRSTDTC = 1:5, PRLAT = c("Left", "LEFT","Bilateral", "RIGHT", "RIgHT"), PRTRT = c("A", "B", "A", "B", "A"), PROCCUR = NA, PRPRESP = NA, stringsAsFactors = FALSE) check_pr_prlat(PR) PR <- data.frame( USUBJID = 1:5, PRCAT = "CONCURRENT OCULAR PROCEDURE", PRSTDTC = 1:5, PRLAT = c("Left", "LEFT","Bilateral", "RIGHT", ""), PRTRT = c("A", "B", "A", "B", "A"), PROCCUR = NA, PRPRESP = NA, stringsAsFactors = FALSE) check_pr_prlat(PR) PR <- data.frame( USUBJID = 1:5, PRCAT = "CONCURRENT OCULAR PROCEDURE", PRSTDTC = 1:5, PRLAT = c("Left", "","Bilateral", "RIGHT", ""), PRTRT = c("A", "B", "A", "B", "A"), PROCCUR = c("Y", "N", "N", "Y", "Y"), PRPRESP = "Y", stringsAsFactors = FALSE) check_pr_prlat(PR) PR <- data.frame( USUBJID = 1:5, PRCAT = c(rep("CONCURRENT NON-OCULAR PROCEDURE",3),rep("CONCURRENT OCULAR PROCEDURE",2)), PRSTDTC = 1:5, PRLAT = c("", "","", "RIGHT", ""), PRTRT = c("A", "B", "A", "B", "A"), PROCCUR = c("Y", "N", "N", "Y", "Y"), PRPRESP = "Y", stringsAsFactors = FALSE) check_pr_prlat(PR)
Identifies multiple dates at the same visit in QS
check_qs_dup(QS)
check_qs_dup(QS)
QS |
QS SDTM dataset with variables USUBJID, QSCAT, VISIT, QSDTC |
Boolean value for whether the check passed or failed, with 'msg' attribute if the test failed
Yuliia Bahatska
QS1 <- data.frame(USUBJID = c(rep(101, 5), rep(102, 5)), QSCAT = "DLQI", QSDTC = rep(c("2017-01-01T08:25", "2017-01-05T09:25", "2017-01-15T10:25","2017-01-20T08:25","2017-01-25T08:25"), 2), VISITNUM = rep(1:5,2), VISIT = rep(c( "Visit 1", "Visit 2", "Visit 3", "UNSCheduled!!!","VIsit 5"), 2), stringsAsFactors = FALSE) check_qs_dup(QS = QS1) # multiple dates for the same visit in QS QS2 <- QS1 QS2$VISIT[QS2$USUBJID == 101] <- "Visit 1" check_qs_dup(QS = QS2) # multiple visit labels for the same date QS3 <- QS1 QS3$QSDTC[QS3$USUBJID == 101] <- "2017-01-01" QS3 check_qs_dup(QS = QS3)
QS1 <- data.frame(USUBJID = c(rep(101, 5), rep(102, 5)), QSCAT = "DLQI", QSDTC = rep(c("2017-01-01T08:25", "2017-01-05T09:25", "2017-01-15T10:25","2017-01-20T08:25","2017-01-25T08:25"), 2), VISITNUM = rep(1:5,2), VISIT = rep(c( "Visit 1", "Visit 2", "Visit 3", "UNSCheduled!!!","VIsit 5"), 2), stringsAsFactors = FALSE) check_qs_dup(QS = QS1) # multiple dates for the same visit in QS QS2 <- QS1 QS2$VISIT[QS2$USUBJID == 101] <- "Visit 1" check_qs_dup(QS = QS2) # multiple visit labels for the same date QS3 <- QS1 QS3$QSDTC[QS3$USUBJID == 101] <- "2017-01-01" QS3 check_qs_dup(QS = QS3)
This check looks for QS dates that occur after death date
check_qs_qsdtc_after_dd(AE, DS, QS)
check_qs_qsdtc_after_dd(AE, DS, QS)
AE |
Adverse Event SDTM dataset with variables USUBJID, AEDTHDTC, AESTDTC, AEDECOD, and AETERM |
DS |
DS Disposition SDTM dataset with variables USUBJID, DSSTDTC, DSDECOD, and DSTERM |
QS |
Questionnaire Test Findings SDTM dataset with variables USUBJID, QSDTC, QSCAT, and QSORRES |
boolean value if check failed or passed with 'msg' attribute if the test failed
Monarch Shah
AE <- data.frame(USUBJID = c(1,1,1,2,2,2), AEDTHDTC = c("", "", "2016-01-01", "", "2016-01", "2016-01-01"), AESTDTC = "2016-01-01", AEDECOD = LETTERS[1:6], AETERM = LETTERS[1:6], stringsAsFactors = FALSE) DS <- data.frame(USUBJID = c(1,1,1,2,2,2), DSSTDTC = "2016-01-01", DSDECOD = c("A", "B", "death", "AC", "BC", "death"), DSTERM = letters[1:6], stringsAsFactors = FALSE) QS <- data.frame(USUBJID = c(1,1,1,2,2,2), QSDTC = c("2015-06-30", "2015-09-30", "2015-12-30", "2015-06-30", "2015-09-30", "2015-12-30"), QSCAT = "A", QSORRES = LETTERS[1:6], QSSTAT = "", VISIT = c("Week 1", "Week 12", "Week 24", "Week 1", "Week 12", "Week 24"), QSSTRESC = LETTERS[1:6], stringsAsFactors = FALSE) check_qs_qsdtc_after_dd(AE, DS, QS) QS$QSDTC[3:5] <- "2016-01-03" check_qs_qsdtc_after_dd(AE, DS, QS) QS$QSSTAT[3] <- "Not Done" check_qs_qsdtc_after_dd(AE, DS, QS) DS$DSSTDTC <- NULL check_qs_qsdtc_after_dd(AE, DS, QS) AE1 <- data.frame(USUBJID = 1, AEDTHDTC = "", AESTDTC = c("2015-11-01", "2016-02-01"), AEDECOD = "Rash", AETERM = "RASH", stringsAsFactors = FALSE) DS1 <- data.frame(USUBJID = 1, DSSTDTC = "2016-01", DSCAT = c("DISPOSITION EVENT", "OTHER"), DSSCAT = c('STUDY COMPLETION/EARLY DISCONTINUATION', ''), DSDECOD = "DEATH", DSTERM = c("DEATH", "DEATH DUE TO PROGRESSIVE DISEASE"), stringsAsFactors = FALSE) QS1 <- data.frame(USUBJID = 1, QSDTC = c("2015-06-30", "2016-01-15", "2016-01-15"), QSCAT = rep("EQ-5D-5L"), QSORRES = "1", QSSTAT = "", VISIT = c("Week 1", "Week 12", "Week 12"), QSSTRESC = "1", stringsAsFactors = FALSE) check_qs_qsdtc_after_dd(AE=AE1, DS=DS1, QS=QS1) AE1$AEDTHDTC[1:2] <- "2015-07-01" check_qs_qsdtc_after_dd(AE=AE1, DS=DS1, QS=QS1)
AE <- data.frame(USUBJID = c(1,1,1,2,2,2), AEDTHDTC = c("", "", "2016-01-01", "", "2016-01", "2016-01-01"), AESTDTC = "2016-01-01", AEDECOD = LETTERS[1:6], AETERM = LETTERS[1:6], stringsAsFactors = FALSE) DS <- data.frame(USUBJID = c(1,1,1,2,2,2), DSSTDTC = "2016-01-01", DSDECOD = c("A", "B", "death", "AC", "BC", "death"), DSTERM = letters[1:6], stringsAsFactors = FALSE) QS <- data.frame(USUBJID = c(1,1,1,2,2,2), QSDTC = c("2015-06-30", "2015-09-30", "2015-12-30", "2015-06-30", "2015-09-30", "2015-12-30"), QSCAT = "A", QSORRES = LETTERS[1:6], QSSTAT = "", VISIT = c("Week 1", "Week 12", "Week 24", "Week 1", "Week 12", "Week 24"), QSSTRESC = LETTERS[1:6], stringsAsFactors = FALSE) check_qs_qsdtc_after_dd(AE, DS, QS) QS$QSDTC[3:5] <- "2016-01-03" check_qs_qsdtc_after_dd(AE, DS, QS) QS$QSSTAT[3] <- "Not Done" check_qs_qsdtc_after_dd(AE, DS, QS) DS$DSSTDTC <- NULL check_qs_qsdtc_after_dd(AE, DS, QS) AE1 <- data.frame(USUBJID = 1, AEDTHDTC = "", AESTDTC = c("2015-11-01", "2016-02-01"), AEDECOD = "Rash", AETERM = "RASH", stringsAsFactors = FALSE) DS1 <- data.frame(USUBJID = 1, DSSTDTC = "2016-01", DSCAT = c("DISPOSITION EVENT", "OTHER"), DSSCAT = c('STUDY COMPLETION/EARLY DISCONTINUATION', ''), DSDECOD = "DEATH", DSTERM = c("DEATH", "DEATH DUE TO PROGRESSIVE DISEASE"), stringsAsFactors = FALSE) QS1 <- data.frame(USUBJID = 1, QSDTC = c("2015-06-30", "2016-01-15", "2016-01-15"), QSCAT = rep("EQ-5D-5L"), QSORRES = "1", QSSTAT = "", VISIT = c("Week 1", "Week 12", "Week 12"), QSSTRESC = "1", stringsAsFactors = FALSE) check_qs_qsdtc_after_dd(AE=AE1, DS=DS1, QS=QS1) AE1$AEDTHDTC[1:2] <- "2015-07-01" check_qs_qsdtc_after_dd(AE=AE1, DS=DS1, QS=QS1)
This check identifies QSDTC values that are duplicated or earlier than last visit's. Unscheduled visits are excluded.
check_qs_qsdtc_visit_ordinal_error(QS)
check_qs_qsdtc_visit_ordinal_error(QS)
QS |
SDTM dataset with variables USUBJID, QSCAT, QSORRES, VISITNUM, VISIT, QSDTC |
boolean value if check failed or passed with 'msg' attribute if the test failed
Simon Luo
# no case QS1 <- data.frame(USUBJID = c(rep(101, 5), rep(102, 5)), QSCAT = "DLQI", QSDTC = rep(c("2017-01-01T08:25", "2017-01-05T09:25", "2017-01-15T10:25","2017-01-20T08:25","2017-01-25T08:25"), 2), VISITNUM = rep(1:5,2), VISIT = rep(c( "Visit 1", "Visit 2", "Visit 3", "UNSCheduled!!!","VIsit 5"), 2), stringsAsFactors = FALSE) QS2 = QS1 QS2$QSCAT = "SKINDEX-29" QS <- rbind(QS1, QS2) check_qs_qsdtc_visit_ordinal_error(QS) # adding cases with earlier date QS$QSDTC[QS$USUBJID == 101 & QS$VISIT == "Visit 3"] <- "2017-01-10T08:25" QS$QSDTC[QS$USUBJID == 102 & QS$VISIT == "Visit 2"] <- "2017-01-01T06:25" check_qs_qsdtc_visit_ordinal_error(QS) # adding cases with duplicated date QS$QSDTC[QS$USUBJID == 102 & QS$VISIT == "Visit 3"] <- "2017-01-01T06:25" check_qs_qsdtc_visit_ordinal_error(QS)
# no case QS1 <- data.frame(USUBJID = c(rep(101, 5), rep(102, 5)), QSCAT = "DLQI", QSDTC = rep(c("2017-01-01T08:25", "2017-01-05T09:25", "2017-01-15T10:25","2017-01-20T08:25","2017-01-25T08:25"), 2), VISITNUM = rep(1:5,2), VISIT = rep(c( "Visit 1", "Visit 2", "Visit 3", "UNSCheduled!!!","VIsit 5"), 2), stringsAsFactors = FALSE) QS2 = QS1 QS2$QSCAT = "SKINDEX-29" QS <- rbind(QS1, QS2) check_qs_qsdtc_visit_ordinal_error(QS) # adding cases with earlier date QS$QSDTC[QS$USUBJID == 101 & QS$VISIT == "Visit 3"] <- "2017-01-10T08:25" QS$QSDTC[QS$USUBJID == 102 & QS$VISIT == "Visit 2"] <- "2017-01-01T06:25" check_qs_qsdtc_visit_ordinal_error(QS) # adding cases with duplicated date QS$QSDTC[QS$USUBJID == 102 & QS$VISIT == "Visit 3"] <- "2017-01-01T06:25" check_qs_qsdtc_visit_ordinal_error(QS)
This code flags when QSSTAT Completion Status is marked as NOT DONE but QSREASND Reason Not Performed is not populated. Some but not all questionnaires in a study may collect Reason Not Performed information, so there may be instances of false positives in which no data correction is required. While QSREASND is a permissible variable, this scenario will be flagged in P21.
check_qs_qsstat_qsreasnd(QS)
check_qs_qsstat_qsreasnd(QS)
QS |
Questionnaire SDTMv dataset with USUBJID, QSCAT, QSDTC, QSSTAT, QSREASND, VISIT (optional) variables |
boolean value if check returns 0 obs, otherwise return subset dataframe.
Katie Patel, Bonita Viegas Monteiro, Tom Stone (HackR 2021 Team WeRawesome)
QS <- data.frame(USUBJID = c(1,1,1,2,2,2), QSDTC = c("2015-06-30", "2015-09-30", "2015-12-30", "2015-06-30", "2015-09-30", "2015-12-30"), QSCAT = "A", VISIT = c("Week 1", "Week 12", "Week 24", "Week 1", "Week 12", "Week 24"), QSSTAT = c("Not Done","NOT DONE","not done", rep("",3)), QSREASND = c("Reasons",rep("",5)), stringsAsFactors = FALSE) check_qs_qsstat_qsreasnd(QS) QS$QSSTAT=NULL check_qs_qsstat_qsreasnd(QS)
QS <- data.frame(USUBJID = c(1,1,1,2,2,2), QSDTC = c("2015-06-30", "2015-09-30", "2015-12-30", "2015-06-30", "2015-09-30", "2015-12-30"), QSCAT = "A", VISIT = c("Week 1", "Week 12", "Week 24", "Week 1", "Week 12", "Week 24"), QSSTAT = c("Not Done","NOT DONE","not done", rep("",3)), QSREASND = c("Reasons",rep("",5)), stringsAsFactors = FALSE) check_qs_qsstat_qsreasnd(QS) QS$QSSTAT=NULL check_qs_qsstat_qsreasnd(QS)
This check is for studies with PRO outcomes data (i.e., QS domain), check that within a given instrument (e.g., QS.QSCAT='BFI' or QS.QSCAT ='MDASI"), if QS.QSSTAT=NOT DONE and QSTESTCD=QSALL, then there should be no populated responses(QS.QSSTRESC) for a particular visit (QS.VISIT), return a dataframe if otherwise
check_qs_qsstat_qsstresc(QS)
check_qs_qsstat_qsstresc(QS)
QS |
Questionnaires SDTM dataset with variables USUBJID, QSSTRESC, VISIT, QSSTAT, QSCAT, QSDTC, QSTESTCD |
boolean value if check failed or passed with 'msg' attribute if the test failed
Sara Bodach
QS <- data.frame( STUDYID = 1, USUBJID = c(rep(1,6),rep(2,6)), QSSTRESC = 1:12, VISIT = c(rep(1,3),rep(2,3),rep(1,3),rep(2,3)), QSSTAT = rep(c("DONE","NOT DONE"),6), QSCAT = rep(c("INDIVIDUAL","OVERALL","BFI"),4), QSDTC = "2016-01-01", QSTESTCD = "QSALL", stringsAsFactors = FALSE ) check_qs_qsstat_qsstresc(QS) QS$QSSTRESC[4]=" " QS$QSSTRESC[6]=NA QS$QSSTRESC[8]="." check_qs_qsstat_qsstresc(QS) QS$QSSTRESC=NULL check_qs_qsstat_qsstresc(QS)
QS <- data.frame( STUDYID = 1, USUBJID = c(rep(1,6),rep(2,6)), QSSTRESC = 1:12, VISIT = c(rep(1,3),rep(2,3),rep(1,3),rep(2,3)), QSSTAT = rep(c("DONE","NOT DONE"),6), QSCAT = rep(c("INDIVIDUAL","OVERALL","BFI"),4), QSDTC = "2016-01-01", QSTESTCD = "QSALL", stringsAsFactors = FALSE ) check_qs_qsstat_qsstresc(QS) QS$QSSTRESC[4]=" " QS$QSSTRESC[6]=NA QS$QSSTRESC[8]="." check_qs_qsstat_qsstresc(QS) QS$QSSTRESC=NULL check_qs_qsstat_qsstresc(QS)
Check for patients with populated RSSCAT but missing RSCAT in RS domain to help flag a potential mapping issue for SPA; this does not warrant a query in Rave.
check_rs_rscat_rsscat(RS)
check_rs_rscat_rsscat(RS)
RS |
Response SDTM dataset with variables USUBJID, RSCAT and RSSCAT. |
boolean value if check failed or passed with 'msg' attribute if the test failed
Saibah Chohan, Ashley Mao, Tina Cho (HackR 2021 Team STA-R)
RS <- data.frame( USUBJID = c("id1", "id1", "id2", "id2", "id3"), RSCAT = c("A", "A", "B", NA, NA), RSSCAT = c("AA", "AA", "BB", "BB","AA")) check_rs_rscat_rsscat(RS) # Test with missing RSCAT RS$RSCAT = NULL check_rs_rscat_rsscat(RS)
RS <- data.frame( USUBJID = c("id1", "id1", "id2", "id2", "id3"), RSCAT = c("A", "A", "B", NA, NA), RSSCAT = c("AA", "AA", "BB", "BB","AA")) check_rs_rscat_rsscat(RS) # Test with missing RSCAT RS$RSCAT = NULL check_rs_rscat_rsscat(RS)
This check identifies records where the same date RSDTC occurs across multiple visits. Only applies to assessments by investigator, selected based on uppercased RSEVAL = "INVESTIGATOR" or missing or RSEVAL variable does not exist.
check_rs_rsdtc_across_visit(RS, preproc = identity, ...)
check_rs_rsdtc_across_visit(RS, preproc = identity, ...)
RS |
Disease Response SDTM dataset with variables USUBJID, RSDTC, VISIT, RSEVAL (optional) |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
boolean value if check failed or passed with 'msg' attribute if the test failed
Will Harris
# example that will be flagged RS <- data.frame( USUBJID = 1, RSDTC = c(rep("2016-01-01",3), rep("2016-06-01",5), rep("2016-06-24",2)), VISIT = c(rep("C1D1",3), rep("C1D2",3), rep("C2D1",4)), RSSPID = "FORMNAME-R:13/L:13XXXX", stringsAsFactors=FALSE) check_rs_rsdtc_across_visit(RS) check_rs_rsdtc_across_visit(RS, preproc=roche_derive_rave_row) # example that will not be flagged because not Investigator RS0 <- RS RS0$RSEVAL <- "INDEPENDENT ASSESSOR" check_rs_rsdtc_across_visit(RS0) check_rs_rsdtc_across_visit(RS0, preproc=roche_derive_rave_row) # example with log line differences in Rave form with records flagged RS1 <- RS RS1$RSSPID = c(rep("FORMNAME-R:13/L:13XXXX",4), rep("FORMNAME-R:13/L:14XXXX",2), rep("FORMNAME-R:03/L:13XXXX",2), rep("FORMNAME-R:9/L:13XXXX", 2)) check_rs_rsdtc_across_visit(RS1) check_rs_rsdtc_across_visit(RS1, preproc=roche_derive_rave_row) # example with RSTESTCD with records flagged RS2 <- RS1 RS2$RSTESTCD = c(rep("OVRLRESP", 2), rep("OTHER", 2), rep("OVRLRESP", 2), rep("OTHER", 2), rep("OVRLRESP", 2)) check_rs_rsdtc_across_visit(RS2) check_rs_rsdtc_across_visit(RS2, preproc=roche_derive_rave_row) # example with records flagged without xxSPID RS3 <- RS RS3$RSSPID <- NULL check_rs_rsdtc_across_visit(RS3) check_rs_rsdtc_across_visit(RS3, preproc=roche_derive_rave_row) # example without required variable RS4 <- RS RS4$VISIT <- NULL check_rs_rsdtc_across_visit(RS4) check_rs_rsdtc_across_visit(RS4, preproc=roche_derive_rave_row)
# example that will be flagged RS <- data.frame( USUBJID = 1, RSDTC = c(rep("2016-01-01",3), rep("2016-06-01",5), rep("2016-06-24",2)), VISIT = c(rep("C1D1",3), rep("C1D2",3), rep("C2D1",4)), RSSPID = "FORMNAME-R:13/L:13XXXX", stringsAsFactors=FALSE) check_rs_rsdtc_across_visit(RS) check_rs_rsdtc_across_visit(RS, preproc=roche_derive_rave_row) # example that will not be flagged because not Investigator RS0 <- RS RS0$RSEVAL <- "INDEPENDENT ASSESSOR" check_rs_rsdtc_across_visit(RS0) check_rs_rsdtc_across_visit(RS0, preproc=roche_derive_rave_row) # example with log line differences in Rave form with records flagged RS1 <- RS RS1$RSSPID = c(rep("FORMNAME-R:13/L:13XXXX",4), rep("FORMNAME-R:13/L:14XXXX",2), rep("FORMNAME-R:03/L:13XXXX",2), rep("FORMNAME-R:9/L:13XXXX", 2)) check_rs_rsdtc_across_visit(RS1) check_rs_rsdtc_across_visit(RS1, preproc=roche_derive_rave_row) # example with RSTESTCD with records flagged RS2 <- RS1 RS2$RSTESTCD = c(rep("OVRLRESP", 2), rep("OTHER", 2), rep("OVRLRESP", 2), rep("OTHER", 2), rep("OVRLRESP", 2)) check_rs_rsdtc_across_visit(RS2) check_rs_rsdtc_across_visit(RS2, preproc=roche_derive_rave_row) # example with records flagged without xxSPID RS3 <- RS RS3$RSSPID <- NULL check_rs_rsdtc_across_visit(RS3) check_rs_rsdtc_across_visit(RS3, preproc=roche_derive_rave_row) # example without required variable RS4 <- RS RS4$VISIT <- NULL check_rs_rsdtc_across_visit(RS4) check_rs_rsdtc_across_visit(RS4, preproc=roche_derive_rave_row)
This check looks for missing RSDTC or VISIT values when RSORRES is not missing and RSSTAT not equal to "NOT DONE" in RS dataset and returns a data frame. Only applies to assessments by investigator.
check_rs_rsdtc_visit(RS)
check_rs_rsdtc_visit(RS)
RS |
Disease Response SDTM dataset with variables USUBJID, RSDTC, RSORRES, VISIT, RSSTAT |
boolean value if check failed or passed with 'msg' attribute if the test failed
Peggy Wen, Stella Banjo (HackR 2021)
RS <- data.frame( USUBJID = 1:10, RSDTC = 1:10, RSORRES = "THING", VISIT = "C1D1", RSSTAT = 1:10, RSEVAL = c("NA","","IRF","investigator",rep("INVESTIGATOR",6)), stringsAsFactors=FALSE ) RS$RSDTC[1]="" RS$RSDTC[2]="NA" RS$RSDTC[3]=NA RS$VISIT[3]="" RS$VISIT[4]="NA" RS$VISIT[5]=NA check_rs_rsdtc_visit(RS) RS$RSORRES[1]="" check_rs_rsdtc_visit(RS) RS$RSORRES[4] = "THING 1" RS$RSORRES[5] = "THING 2" check_rs_rsdtc_visit(RS)
RS <- data.frame( USUBJID = 1:10, RSDTC = 1:10, RSORRES = "THING", VISIT = "C1D1", RSSTAT = 1:10, RSEVAL = c("NA","","IRF","investigator",rep("INVESTIGATOR",6)), stringsAsFactors=FALSE ) RS$RSDTC[1]="" RS$RSDTC[2]="NA" RS$RSDTC[3]=NA RS$VISIT[3]="" RS$VISIT[4]="NA" RS$VISIT[5]=NA check_rs_rsdtc_visit(RS) RS$RSORRES[1]="" check_rs_rsdtc_visit(RS) RS$RSORRES[4] = "THING 1" RS$RSORRES[5] = "THING 2" check_rs_rsdtc_visit(RS)
This check identifies RSDTC values when RSEVAL == 'INVESTIGATOR' and RSTESTCD == 'OVRLRESP' that are duplicated or earlier than last visit's. Unscheduled and 'NOT DONE' visits are excluded.
check_rs_rsdtc_visit_ordinal_error(RS)
check_rs_rsdtc_visit_ordinal_error(RS)
RS |
Response SDTM dataset with variables USUBJID, VISITNUM, VISIT, RSDTC, RSTESTCD, RSEVAL, RSSTAT |
boolean value if check failed or passed with 'msg' attribute if the test failed
James Zhang
# no cases RS<- data.frame(USUBJID = 101:102, RSDTC=rep(c("2017-01-01T08:25", "2017-01-05T09:25", "2017-01-15T10:25","2017-01-20T08:25","2017-01-25T08:25"), 2), VISITNUM=rep(1:5,2), VISIT=rep(c("Screening", "Cycle 1", "Cycle 2","Cycle 3","Follow-up"),2), RSTESTCD="OVRLRESP", RSEVAL="INVESTIGATOR", RSSTAT="", stringsAsFactors=FALSE) check_rs_rsdtc_visit_ordinal_error(RS) # adding cases with earler date RS$RSDTC[RS$USUBJID == 101 & RS$VISIT == "Cycle 3"] <- "2017-01-02T08:25" RS$RSDTC[RS$USUBJID == 102 & RS$VISIT == "Cycle 1"] <- "2017-01-01T06:25" check_rs_rsdtc_visit_ordinal_error(RS)
# no cases RS<- data.frame(USUBJID = 101:102, RSDTC=rep(c("2017-01-01T08:25", "2017-01-05T09:25", "2017-01-15T10:25","2017-01-20T08:25","2017-01-25T08:25"), 2), VISITNUM=rep(1:5,2), VISIT=rep(c("Screening", "Cycle 1", "Cycle 2","Cycle 3","Follow-up"),2), RSTESTCD="OVRLRESP", RSEVAL="INVESTIGATOR", RSSTAT="", stringsAsFactors=FALSE) check_rs_rsdtc_visit_ordinal_error(RS) # adding cases with earler date RS$RSDTC[RS$USUBJID == 101 & RS$VISIT == "Cycle 3"] <- "2017-01-02T08:25" RS$RSDTC[RS$USUBJID == 102 & RS$VISIT == "Cycle 1"] <- "2017-01-01T06:25" check_rs_rsdtc_visit_ordinal_error(RS)
Check if SC.SCCAT = "STUDY EYE SELECTION" and SC.SCTESTCD = "ELIGEYE", then SC.SCSTRESC should have "OS", "OD", or "OU" values. Flag if subject is in DM and without an associated SC.SCSTRESC value or the ELIGEYE Eye Meeting Eligibility Criteria value is not "OS", "OD", or "OU".
check_sc_dm_eligcrit(DM, SC)
check_sc_dm_eligcrit(DM, SC)
DM |
Subject Demographics SDTM dataset with variable USUBJID |
SC |
Subject Characteristics SDTM dataset for Ophtho Study with variables USUBJID, SCTESTCD, SCTEST, SCCAT, SCSTRESC, SCDTC |
boolean value if check failed or passed with 'msg' attribute if the test failed
Monarch Shah (HackR 2021 Team Eye)
Other OPHTH:
check_ae_aelat()
,
check_cm_cmlat()
,
check_cm_cmlat_prior_ocular()
,
check_oe_bcva_1m_late_early_tot()
,
check_oe_bcva_4m_late_early_tot()
,
check_oe_bcva_4m_vs_1m_req()
,
check_oe_bcva_tot_mismatch()
,
check_oe_sc_lat_count_fingers()
,
check_pr_prlat()
,
check_sc_dm_seyeselc()
dm <- data.frame(USUBJID = c(1,2)) sc <- data.frame(USUBJID = c(1,1,1,2,2,2), SCTEST = c("Eye Meeting Eligibility Criteria", "Focus of Study-Specific Interest", " ", "Eye Meeting Eligibility Criteria", "Focus of Study-Specific Interest", " "), SCTESTCD = c("ELIGEYE", "FOCID", "", "ELIGEYE", "FOCID", ""), SCCAT = c("STUDY EYE SELECTION", "STUDY EYE SELECTION", "", "STUDY EYE SELECTION", "STUDY EYE SELECTION", ""), SCSTRESC = c("OS", "OS", "", "", "OU", ""), SCDTC = rep("2021-01-01", 6), stringsAsFactors = FALSE) check_sc_dm_eligcrit(SC=sc, DM=dm) dm <- data.frame(USUBJID = c(1,2,3,4)) sc$SCSTRESC[4] = "OS" check_sc_dm_eligcrit(SC=sc, DM=dm) sc$SCSTRESC <- NULL check_sc_dm_eligcrit(SC=sc, DM=dm)
dm <- data.frame(USUBJID = c(1,2)) sc <- data.frame(USUBJID = c(1,1,1,2,2,2), SCTEST = c("Eye Meeting Eligibility Criteria", "Focus of Study-Specific Interest", " ", "Eye Meeting Eligibility Criteria", "Focus of Study-Specific Interest", " "), SCTESTCD = c("ELIGEYE", "FOCID", "", "ELIGEYE", "FOCID", ""), SCCAT = c("STUDY EYE SELECTION", "STUDY EYE SELECTION", "", "STUDY EYE SELECTION", "STUDY EYE SELECTION", ""), SCSTRESC = c("OS", "OS", "", "", "OU", ""), SCDTC = rep("2021-01-01", 6), stringsAsFactors = FALSE) check_sc_dm_eligcrit(SC=sc, DM=dm) dm <- data.frame(USUBJID = c(1,2,3,4)) sc$SCSTRESC[4] = "OS" check_sc_dm_eligcrit(SC=sc, DM=dm) sc$SCSTRESC <- NULL check_sc_dm_eligcrit(SC=sc, DM=dm)
Check if SC.SCCAT = "STUDY EYE SELECTION" and SC.SCTESTCD = "FOCID", then SC.SCSTRESC should have "OS" or "OD" values. Flag if subject is in DM and without an associated SC.SCSTRESC value or the STUDY EYE SELECTION value is not "OS" or "OD".
check_sc_dm_seyeselc(DM, SC)
check_sc_dm_seyeselc(DM, SC)
DM |
Subject Demographics SDTM dataset with variable USUBJID |
SC |
Subject Characteristics SDTM dataset for Ophtho Study with variables USUBJID, SCTESTCD, SCTEST, SCCAT, SCSTRESC, SCDTC |
boolean value if check failed or passed with 'msg' attribute if the test failed
Monarch Shah (HackR 2021 Team Eye)
Other OPHTH:
check_ae_aelat()
,
check_cm_cmlat()
,
check_cm_cmlat_prior_ocular()
,
check_oe_bcva_1m_late_early_tot()
,
check_oe_bcva_4m_late_early_tot()
,
check_oe_bcva_4m_vs_1m_req()
,
check_oe_bcva_tot_mismatch()
,
check_oe_sc_lat_count_fingers()
,
check_pr_prlat()
,
check_sc_dm_eligcrit()
dm <- data.frame(USUBJID = c(1,2)) sc <- data.frame(USUBJID = c(1,1,1,2,2,2), SCTEST = c("Eye Meeting Eligibility Criteria", "Focus of Study-Specific Interest", " ", "Eye Meeting Eligibility Criteria", "Focus of Study-Specific Interest", " "), SCTESTCD = c("ELIGEYE", "FOCID", "", "ELIGEYE", "FOCID", ""), SCCAT = c("STUDY EYE SELECTION", "STUDY EYE SELECTION", "", "STUDY EYE SELECTION", "STUDY EYE SELECTION", ""), SCSTRESC = c("LEFT", "OS", "", "RIGHT", "OD", ""), SCDTC = rep("2021-01-01", 6), stringsAsFactors = FALSE) check_sc_dm_seyeselc(SC=sc, DM=dm) dm <- data.frame(USUBJID = c(1,2,3,4)) sc <- data.frame(USUBJID = c(1,1,1,2,2,2), SCTEST = c("Eye Meeting Eligibility Criteria", "Focus of Study-Specific Interest", " ", "Eye Meeting Eligibility Criteria", "Focus of Study-Specific Interest", " "), SCTESTCD = c("ELIGEYE", "FOCID", "", "ELIGEYE", "FOCID", ""), SCCAT = c("STUDY EYE SELECTION", "STUDY EYE SELECTION", "", "STUDY EYE SELECTION", "STUDY EYE SELECTION", ""), SCSTRESC = c("LEFT", "OS", "", "RIGHT", "", ""), SCDTC = rep("2021-01-01", 6), stringsAsFactors = FALSE) check_sc_dm_seyeselc(SC=sc, DM=dm)
dm <- data.frame(USUBJID = c(1,2)) sc <- data.frame(USUBJID = c(1,1,1,2,2,2), SCTEST = c("Eye Meeting Eligibility Criteria", "Focus of Study-Specific Interest", " ", "Eye Meeting Eligibility Criteria", "Focus of Study-Specific Interest", " "), SCTESTCD = c("ELIGEYE", "FOCID", "", "ELIGEYE", "FOCID", ""), SCCAT = c("STUDY EYE SELECTION", "STUDY EYE SELECTION", "", "STUDY EYE SELECTION", "STUDY EYE SELECTION", ""), SCSTRESC = c("LEFT", "OS", "", "RIGHT", "OD", ""), SCDTC = rep("2021-01-01", 6), stringsAsFactors = FALSE) check_sc_dm_seyeselc(SC=sc, DM=dm) dm <- data.frame(USUBJID = c(1,2,3,4)) sc <- data.frame(USUBJID = c(1,1,1,2,2,2), SCTEST = c("Eye Meeting Eligibility Criteria", "Focus of Study-Specific Interest", " ", "Eye Meeting Eligibility Criteria", "Focus of Study-Specific Interest", " "), SCTESTCD = c("ELIGEYE", "FOCID", "", "ELIGEYE", "FOCID", ""), SCCAT = c("STUDY EYE SELECTION", "STUDY EYE SELECTION", "", "STUDY EYE SELECTION", "STUDY EYE SELECTION", ""), SCSTRESC = c("LEFT", "OS", "", "RIGHT", "", ""), SCDTC = rep("2021-01-01", 6), stringsAsFactors = FALSE) check_sc_dm_seyeselc(SC=sc, DM=dm)
This check looks for non-missing SS.SSDTC when SS.SSORRES contains 'ALIVE' and Subject Status Date/Time of Assessments is greater then Start Date/Time of Disposition Event(SS.SSDTC > DS.DSSTDTC)
check_ss_ssdtc_alive_dm(SS, DM)
check_ss_ssdtc_alive_dm(SS, DM)
SS |
Subject Status SDTM dataset with variables USUBJID, SSDTC, SSORRES, SSTESTCD, VISIT |
DM |
Demographics SDTM dataset with variables USUBJID, DTHDTC |
boolean value if check failed or passed with 'msg' attribute if the test failed
Vira Vrakina
SS <- data.frame( USUBJID = 1:5, SSDTC = "2020-01-02", SSTESTCD = "SURVSTAT", SSORRES = c("DEAD","DEAD","ALIVE","DEAD","ALIVE"), VISIT = "WEEK 4" ) DM <- data.frame( USUBJID = 1:5, DTHDTC = "2020-01-03" ) check_ss_ssdtc_alive_dm(SS, DM) SS <- data.frame( USUBJID = 1:5, SSDTC = "2020-01-04", SSTESTCD = "SURVSTAT", SSORRES = c("DEAD","DEAD","ALIVE","DEAD","ALIVE"), VISIT = "WEEK 4" ) DM <- data.frame( USUBJID = 1:5, DTHDTC = c("2020-01-04", "2020-01-05", "2020-01-03", "2020-01-04", "2020-01-05") ) check_ss_ssdtc_alive_dm(SS, DM)
SS <- data.frame( USUBJID = 1:5, SSDTC = "2020-01-02", SSTESTCD = "SURVSTAT", SSORRES = c("DEAD","DEAD","ALIVE","DEAD","ALIVE"), VISIT = "WEEK 4" ) DM <- data.frame( USUBJID = 1:5, DTHDTC = "2020-01-03" ) check_ss_ssdtc_alive_dm(SS, DM) SS <- data.frame( USUBJID = 1:5, SSDTC = "2020-01-04", SSTESTCD = "SURVSTAT", SSORRES = c("DEAD","DEAD","ALIVE","DEAD","ALIVE"), VISIT = "WEEK 4" ) DM <- data.frame( USUBJID = 1:5, DTHDTC = c("2020-01-04", "2020-01-05", "2020-01-03", "2020-01-04", "2020-01-05") ) check_ss_ssdtc_alive_dm(SS, DM)
This check looks for missing death date in DS dataset if there is DEAD status date in SS dataset or if Subject Status Date/Time of Assessments is less than Start Date/Time of Disposition Event(SS.SSDTC < DS.DSSTDTC)
check_ss_ssdtc_dead_ds(SS, DS, preproc = identity, ...)
check_ss_ssdtc_dead_ds(SS, DS, preproc = identity, ...)
SS |
Subject Status SDTM dataset with variables USUBJID, SSDTC, SSSTRESC, VISIT |
DS |
Disposition SDTM dataset with variables USUBJID, DSSTDTC, DSDECOD, DSCAT |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
boolean value if check failed or passed with 'msg' attribute if the test failed
Vira Vrakina
SS <- data.frame( USUBJID = 1:5, SSDTC = "2020-01-02", SSSTRESC = c("DEAD","DEAD","ALIVE","DEAD","ALIVE"), VISIT = "FOLLOW-UP", SSSPID = "FORMNAME-R:13/L:13XXXX" ) DS <- data.frame( USUBJID = 1:5, DSSTDTC = c("2020-01-02","2020-01-02", "2020-01-01", "2020-01-03", "2020-01-01"), DSDECOD = c(rep('DEATH', 5)), DSSPID = "FORMNAME-R:13/L:13XXXX", DSCAT = c("OTHER EVENT", rep("DISPOSITION EVENT", 4)) ) check_ss_ssdtc_dead_ds(SS, DS) check_ss_ssdtc_dead_ds(SS, DS, preproc=roche_derive_rave_row) SS <- data.frame( USUBJID = 1:5, SSDTC = "2020-01-02", SSSTRESC = c( rep("DEAD", 5)), VISIT = "FOLLOW-UP", SSSPID = "FORMNAME-R:13/L:13XXXX" ) DS <- data.frame( USUBJID = 1:5, DSSTDTC = c("2020-01-02","2020-01-02", "2020-01-01", "2020-01-03", "2020-01-01"), DSDECOD = c(rep('DEATH', 5)), DSSPID = "FORMNAME-R:13/L:13XXXX", DSCAT = c(rep("DISPOSITION EVENT", 5)) ) check_ss_ssdtc_dead_ds(SS, DS) check_ss_ssdtc_dead_ds(SS, DS, preproc=roche_derive_rave_row) SS <- data.frame( USUBJID = 1:5, SSDTC = "2020-01-02", SSSTRESC = c(rep("DEAD", 5)), VISIT = "FOLLOW-UP", SSSPID = "FORMNAME-R:13/L:13XXXX" ) DS <- data.frame( USUBJID = 1:5, DSSTDTC = 2, DSDECOD = c(rep('DEATH', 5)), DSSPID = "FORMNAME-R:13/L:13XXXX", DSCAT = c(rep("DISPOSITION EVENT", 5)) ) check_ss_ssdtc_dead_ds(SS, DS)
SS <- data.frame( USUBJID = 1:5, SSDTC = "2020-01-02", SSSTRESC = c("DEAD","DEAD","ALIVE","DEAD","ALIVE"), VISIT = "FOLLOW-UP", SSSPID = "FORMNAME-R:13/L:13XXXX" ) DS <- data.frame( USUBJID = 1:5, DSSTDTC = c("2020-01-02","2020-01-02", "2020-01-01", "2020-01-03", "2020-01-01"), DSDECOD = c(rep('DEATH', 5)), DSSPID = "FORMNAME-R:13/L:13XXXX", DSCAT = c("OTHER EVENT", rep("DISPOSITION EVENT", 4)) ) check_ss_ssdtc_dead_ds(SS, DS) check_ss_ssdtc_dead_ds(SS, DS, preproc=roche_derive_rave_row) SS <- data.frame( USUBJID = 1:5, SSDTC = "2020-01-02", SSSTRESC = c( rep("DEAD", 5)), VISIT = "FOLLOW-UP", SSSPID = "FORMNAME-R:13/L:13XXXX" ) DS <- data.frame( USUBJID = 1:5, DSSTDTC = c("2020-01-02","2020-01-02", "2020-01-01", "2020-01-03", "2020-01-01"), DSDECOD = c(rep('DEATH', 5)), DSSPID = "FORMNAME-R:13/L:13XXXX", DSCAT = c(rep("DISPOSITION EVENT", 5)) ) check_ss_ssdtc_dead_ds(SS, DS) check_ss_ssdtc_dead_ds(SS, DS, preproc=roche_derive_rave_row) SS <- data.frame( USUBJID = 1:5, SSDTC = "2020-01-02", SSSTRESC = c(rep("DEAD", 5)), VISIT = "FOLLOW-UP", SSSPID = "FORMNAME-R:13/L:13XXXX" ) DS <- data.frame( USUBJID = 1:5, DSSTDTC = 2, DSDECOD = c(rep('DEATH', 5)), DSSPID = "FORMNAME-R:13/L:13XXXX", DSCAT = c(rep("DISPOSITION EVENT", 5)) ) check_ss_ssdtc_dead_ds(SS, DS)
This check looks for non-missing SS.SSDTC when SS.SSSTRESC='DEAD' and Subject Status Date/Time of Assessments is less than Start Date/Time of Disposition Event(SS.SSDTC < DS.DSSTDTC)
check_ss_ssdtc_dead_dthdtc(SS, DM)
check_ss_ssdtc_dead_dthdtc(SS, DM)
SS |
Subject Status SDTM dataset with variables USUBJID, SSDTC, SSSTRESC, VISIT |
DM |
Demographics SDTM dataset with variables USUBJID, DTHDTC |
boolean value if check failed or passed with 'msg' attribute if the test failed
Vira Vrakina
SS <- data.frame( USUBJID = 1:5, SSDTC = "2020-01-02", SSSTRESC = c("DEAD","DEAD","ALIVE","DEAD","ALIVE"), VISIT = "DAY 10" ) DM <- data.frame( USUBJID = 1:5, DTHDTC = "2020-01-02" ) check_ss_ssdtc_dead_dthdtc(SS, DM) SS <- data.frame( USUBJID = 1:5, SSDTC = "2020-01-02", SSSTRESC = c("DEAD","DEAD","ALIVE","DEAD","ALIVE"), VISIT = "FOLLOW-UP" ) DM <- data.frame( USUBJID = 1:5, DTHDTC = c("2020-01-01","2020-01-02","2020-01-03","2020-01-04","2020-01-02") ) check_ss_ssdtc_dead_dthdtc(SS, DM)
SS <- data.frame( USUBJID = 1:5, SSDTC = "2020-01-02", SSSTRESC = c("DEAD","DEAD","ALIVE","DEAD","ALIVE"), VISIT = "DAY 10" ) DM <- data.frame( USUBJID = 1:5, DTHDTC = "2020-01-02" ) check_ss_ssdtc_dead_dthdtc(SS, DM) SS <- data.frame( USUBJID = 1:5, SSDTC = "2020-01-02", SSSTRESC = c("DEAD","DEAD","ALIVE","DEAD","ALIVE"), VISIT = "FOLLOW-UP" ) DM <- data.frame( USUBJID = 1:5, DTHDTC = c("2020-01-01","2020-01-02","2020-01-03","2020-01-04","2020-01-02") ) check_ss_ssdtc_dead_dthdtc(SS, DM)
This check is for studies with LTFU mapped to the SS domain, check that if 'NOT DONE' (Unable to Contact), then there should not be a response (SSORRES)
check_ss_ssstat_ssorres(SS, preproc = identity, ...)
check_ss_ssstat_ssorres(SS, preproc = identity, ...)
SS |
Long-Term Survival Follow-Up SDTM dataset with variables USUBJID, VISIT, SSSTAT, SSDTC, SSORRES, SSSPID (optional) |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
boolean value if check failed or passed with 'msg' attribute if the test failed
Sara Bodach
SS <- data.frame( STUDYID = 1, USUBJID = c(rep(1,6),rep(2,6)), SSSTRESC = c("ALIVE", "DEAD", "ALIVE", "", "", "U"), SSORRES = c("ALIVE", "DEAD", "ALIVE", "", "", "U"), VISIT = rep(c("SURVIVAL FOLLOW UP 3 MONTHS"),6), SSSTAT = rep(c("","NOT DONE"),6), SSDTC = "2016-01-01", SSSPID = "", stringsAsFactors = FALSE ) check_ss_ssstat_ssorres(SS) SS$SSORRES[2]=NA check_ss_ssstat_ssorres(SS) SS$SSSPID="FORMNAME-R:5/L:5XXXX" check_ss_ssstat_ssorres(SS,preproc=roche_derive_rave_row) SS$SSORRES[6]=NA SS$SSORRES[8]="" SS$SSORRES[12]=NA check_ss_ssstat_ssorres(SS) SS$SSORRES=NULL check_ss_ssstat_ssorres(SS)
SS <- data.frame( STUDYID = 1, USUBJID = c(rep(1,6),rep(2,6)), SSSTRESC = c("ALIVE", "DEAD", "ALIVE", "", "", "U"), SSORRES = c("ALIVE", "DEAD", "ALIVE", "", "", "U"), VISIT = rep(c("SURVIVAL FOLLOW UP 3 MONTHS"),6), SSSTAT = rep(c("","NOT DONE"),6), SSDTC = "2016-01-01", SSSPID = "", stringsAsFactors = FALSE ) check_ss_ssstat_ssorres(SS) SS$SSORRES[2]=NA check_ss_ssstat_ssorres(SS) SS$SSSPID="FORMNAME-R:5/L:5XXXX" check_ss_ssstat_ssorres(SS,preproc=roche_derive_rave_row) SS$SSORRES[6]=NA SS$SSORRES[8]="" SS$SSORRES[12]=NA check_ss_ssstat_ssorres(SS) SS$SSORRES=NULL check_ss_ssstat_ssorres(SS)
This check looks for duplicate TR records and returns a data frame. Only applies to assessments by Investigator, selected based on uppercased TREVAL = "INVESTIGATOR" or missing or TREVAL variable does not exist.
check_tr_dup(TR)
check_tr_dup(TR)
TR |
dataframe with variables USUBJID, TRCAT, TRLINKID/TRLNKID, TRTESTCD, TRSTRESC, TRDTC, TRSPID (if it exists) |
boolean value if check failed or passed with 'msg' attribute if the test failed
Joel Laxamana
# example with an error TR <- data.frame( USUBJID = c(1,1,2,2), TRCAT = c(1,1,2,2), TRTESTCD = c(1,1,2,2), TRLINKID = c(1,1,2,2), TRDTC = c(rep("2016-01-01",2), rep("2016-06-01",2)), TRSTRESC = c(1,1,2,2), TRSPID = "FORMNAME-R:19/L:19XXXX", TREVAL = "INVESTIGATOR", stringsAsFactors = FALSE ) check_tr_dup(TR) TR1 <- TR TR1$TRSPID <- NULL check_tr_dup(TR1) TR2 <- TR TR2$TREVAL <- NULL check_tr_dup(TR2) # example with no records flagged because issues only among IRF records TR3 <- TR TR3$TREVAL <- "INDEPENDENT ASSESSOR" check_tr_dup(TR3) # example with required variable missing TR4 <- TR TR4$TRLINKID <- NULL check_tr_dup(TR4)
# example with an error TR <- data.frame( USUBJID = c(1,1,2,2), TRCAT = c(1,1,2,2), TRTESTCD = c(1,1,2,2), TRLINKID = c(1,1,2,2), TRDTC = c(rep("2016-01-01",2), rep("2016-06-01",2)), TRSTRESC = c(1,1,2,2), TRSPID = "FORMNAME-R:19/L:19XXXX", TREVAL = "INVESTIGATOR", stringsAsFactors = FALSE ) check_tr_dup(TR) TR1 <- TR TR1$TRSPID <- NULL check_tr_dup(TR1) TR2 <- TR TR2$TREVAL <- NULL check_tr_dup(TR2) # example with no records flagged because issues only among IRF records TR3 <- TR TR3$TREVAL <- "INDEPENDENT ASSESSOR" check_tr_dup(TR3) # example with required variable missing TR4 <- TR TR4$TRLINKID <- NULL check_tr_dup(TR4)
This check identifies records where the same date TRDTC occurs across multiple visits for Longest Diameter measurements (TRTESTCD is "LDIAM"). Only applies to assessments by investigator, selected based on uppercased TREVAL = "INVESTIGATOR" or missing or TREVAL variable does not exist.
check_tr_trdtc_across_visit(TR, preproc = identity, ...)
check_tr_trdtc_across_visit(TR, preproc = identity, ...)
TR |
Tumor Result SDTM dataset with variables USUBJID, TRDTC, TRTESTCD, VISIT, TREVAL (optional) |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
boolean value if check failed or passed with 'msg' attribute if the test failed
Will Harris
TR <- data.frame( USUBJID = 1, TRDTC = c(rep("2016-01-01",3), rep("2016-06-01",5), rep("2016-06-24",2)), VISIT = c(rep("C1D1",3), rep("C1D2",3), rep("C2D1",4)), TRTESTCD = c(rep("LDIAM",7),rep("SAXIS",3)), TRSPID = "FORMNAME-R:13/L:13XXXX", stringsAsFactors=FALSE) check_tr_trdtc_across_visit(TR) check_tr_trdtc_across_visit(TR, preproc=roche_derive_rave_row) TR2 <- TR TR2$TRSPID[4:5] <- c("FORMNAME2-R:5/L:13XXXX", "FORMNAME3-R:0/L:13XXXX") check_tr_trdtc_across_visit(TR2) check_tr_trdtc_across_visit(TR2, preproc=roche_derive_rave_row) # missing optional variable TR3 <- TR TR3$TRSPID <- NULL check_tr_trdtc_across_visit(TR3) check_tr_trdtc_across_visit(TR3, preproc=roche_derive_rave_row) # missing required variable TR4 <- TR TR4$TRTESTCD <- NULL check_tr_trdtc_across_visit(TR4) check_tr_trdtc_across_visit(TR4, preproc=roche_derive_rave_row)
TR <- data.frame( USUBJID = 1, TRDTC = c(rep("2016-01-01",3), rep("2016-06-01",5), rep("2016-06-24",2)), VISIT = c(rep("C1D1",3), rep("C1D2",3), rep("C2D1",4)), TRTESTCD = c(rep("LDIAM",7),rep("SAXIS",3)), TRSPID = "FORMNAME-R:13/L:13XXXX", stringsAsFactors=FALSE) check_tr_trdtc_across_visit(TR) check_tr_trdtc_across_visit(TR, preproc=roche_derive_rave_row) TR2 <- TR TR2$TRSPID[4:5] <- c("FORMNAME2-R:5/L:13XXXX", "FORMNAME3-R:0/L:13XXXX") check_tr_trdtc_across_visit(TR2) check_tr_trdtc_across_visit(TR2, preproc=roche_derive_rave_row) # missing optional variable TR3 <- TR TR3$TRSPID <- NULL check_tr_trdtc_across_visit(TR3) check_tr_trdtc_across_visit(TR3, preproc=roche_derive_rave_row) # missing required variable TR4 <- TR TR4$TRTESTCD <- NULL check_tr_trdtc_across_visit(TR4) check_tr_trdtc_across_visit(TR4, preproc=roche_derive_rave_row)
This check identifies TRDTC values when TREVAL == 'INVESTIGATOR' are duplicated or earlier than last visit's. Unscheduled and 'NOT DONE' visits are excluded.
check_tr_trdtc_visit_ordinal_error(TR)
check_tr_trdtc_visit_ordinal_error(TR)
TR |
Tumor Response Measurement SDTM dataset with variables USUBJID, VISITNUM, VISIT, TRDTC, TREVAL, TRSTAT |
boolean value if check failed or passed with 'msg' attribute if the test failed
James Zhang
# no case TR<- data.frame(USUBJID = 101:102, TRSEQ=rep(1:5,2), TRDTC=rep(c("2017-01-01T08:25", "2017-01-05T09:25", "2017-01-15T10:25","2017-01-20T08:25","2017-01-25T08:25"), 2), VISITNUM=rep(1:5,2), VISIT=rep(c("Screening", "Cycle 1", "Cycle 2","Cycle 3","Follow-up"),2), TREVAL="INVESTIGATOR", TRSTAT="", stringsAsFactors=FALSE) check_tr_trdtc_visit_ordinal_error(TR) # Cases with earler datetime TR$TRDTC[TR$USUBJID == 101 & TR$VISIT == "Cycle 3"] <- "2017-01-02T08:25" TR$TRDTC[TR$USUBJID == 102 & TR$VISIT == "Cycle 1"] <- "2017-01-01T06:25" check_tr_trdtc_visit_ordinal_error(TR)
# no case TR<- data.frame(USUBJID = 101:102, TRSEQ=rep(1:5,2), TRDTC=rep(c("2017-01-01T08:25", "2017-01-05T09:25", "2017-01-15T10:25","2017-01-20T08:25","2017-01-25T08:25"), 2), VISITNUM=rep(1:5,2), VISIT=rep(c("Screening", "Cycle 1", "Cycle 2","Cycle 3","Follow-up"),2), TREVAL="INVESTIGATOR", TRSTAT="", stringsAsFactors=FALSE) check_tr_trdtc_visit_ordinal_error(TR) # Cases with earler datetime TR$TRDTC[TR$USUBJID == 101 & TR$VISIT == "Cycle 3"] <- "2017-01-02T08:25" TR$TRDTC[TR$USUBJID == 102 & TR$VISIT == "Cycle 1"] <- "2017-01-01T06:25" check_tr_trdtc_visit_ordinal_error(TR)
This checks looks for TR records with missing values in numeric result/finding for the Longest Diameter (TRTESTCD is LDIAM) tumor measurement. Only applies to assessments by investigator, selected based on uppercased TREVAL = "INVESTIGATOR" or missing or TREVAL variable does not exist.
check_tr_trstresn_ldiam(TR, preproc = identity, ...)
check_tr_trstresn_ldiam(TR, preproc = identity, ...)
TR |
Tumor Results SDTM dataset with variables USUBJID, TRTESTCD, TRLINKID/TRLNKID, TRDTC, VISIT, TRORRES, TRSTRESN, TREVAL (optional), TRSTAT (optional), TRSPID (optional) |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
Boolean value for whether the check passed or failed, with 'msg' attribute if the check failed
Will Harris
TR <- data.frame(USUBJID = 1:5, TRTESTCD = c("OTHER", rep("LDIAM", 4)), TRLINKID = 1:5, TRDTC = 1:5, VISIT = LETTERS[1:5], TRORRES = LETTERS[1:5], TRSTRESN = 1:5, TRSTAT = "", TREVAL = "INVESTIGATOR", TRSPID = "FORMNAME-R:19/L:19XXXX", stringsAsFactors = FALSE) check_tr_trstresn_ldiam(TR) TR1 <- TR TR1$TRSTAT <- NULL TR1$TREVAL <- NULL TR1$TRSPID <- NULL check_tr_trstresn_ldiam(TR1) TR2 <- TR TR2$TRSTRESN <- c("", "NA", NA, 1, 1) check_tr_trstresn_ldiam(TR2) check_tr_trstresn_ldiam(TR2,preproc=roche_derive_rave_row)
TR <- data.frame(USUBJID = 1:5, TRTESTCD = c("OTHER", rep("LDIAM", 4)), TRLINKID = 1:5, TRDTC = 1:5, VISIT = LETTERS[1:5], TRORRES = LETTERS[1:5], TRSTRESN = 1:5, TRSTAT = "", TREVAL = "INVESTIGATOR", TRSPID = "FORMNAME-R:19/L:19XXXX", stringsAsFactors = FALSE) check_tr_trstresn_ldiam(TR) TR1 <- TR TR1$TRSTAT <- NULL TR1$TREVAL <- NULL TR1$TRSPID <- NULL check_tr_trstresn_ldiam(TR1) TR2 <- TR TR2$TRSTRESN <- c("", "NA", NA, 1, 1) check_tr_trstresn_ldiam(TR2) check_tr_trstresn_ldiam(TR2,preproc=roche_derive_rave_row)
This check looks for missing MedDRA version; if it's present, also checking it's the current version
check_ts_aedict(TS)
check_ts_aedict(TS)
TS |
Trial Summary SDTM dataset with variables TSPARMCD and TSVAL |
boolean value if check failed or passed with 'msg' attribute if the test failed
Vira Vrakina, Antony Howard (HackR 2021 Team Pentraxin1)
TS1 <- data.frame( STUDYID = 1, TSPARMCD = "AEDICT", TSVAL = "MedDRA 22.0", TSVAL2 = "" ) TS2 <- data.frame( STUDYID = 2, TSPARMCD = "AEDICT", TSVAL = "", TSVAL1 = "meddra v22.0" ) TS3 <- data.frame( STUDYID = 3, TSPARMCD = "AEDICT", TSVAL = "" ) TS4 <-data.frame( STUDYID = 4, TSPARMCD = "CMDICT", TSVAL = "" ) TS5 <- data.frame( STUDYID = 1, TSPARMCD = "AEDICT", TSVAL = "meddra 24.0", TSVAL2 = "" ) TS6 <- data.frame( STUDYID = 1, TSPARMCD = "AEDICT", TSVAL = " meddra 23.0 ", TSVAL2 = "" ) check_ts_aedict(TS1) check_ts_aedict(TS2) check_ts_aedict(TS3) check_ts_aedict(TS4) check_ts_aedict(TS5) check_ts_aedict(TS6) check_ts_aedict(rbind(TS1,TS1))
TS1 <- data.frame( STUDYID = 1, TSPARMCD = "AEDICT", TSVAL = "MedDRA 22.0", TSVAL2 = "" ) TS2 <- data.frame( STUDYID = 2, TSPARMCD = "AEDICT", TSVAL = "", TSVAL1 = "meddra v22.0" ) TS3 <- data.frame( STUDYID = 3, TSPARMCD = "AEDICT", TSVAL = "" ) TS4 <-data.frame( STUDYID = 4, TSPARMCD = "CMDICT", TSVAL = "" ) TS5 <- data.frame( STUDYID = 1, TSPARMCD = "AEDICT", TSVAL = "meddra 24.0", TSVAL2 = "" ) TS6 <- data.frame( STUDYID = 1, TSPARMCD = "AEDICT", TSVAL = " meddra 23.0 ", TSVAL2 = "" ) check_ts_aedict(TS1) check_ts_aedict(TS2) check_ts_aedict(TS3) check_ts_aedict(TS4) check_ts_aedict(TS5) check_ts_aedict(TS6) check_ts_aedict(rbind(TS1,TS1))
This check looks for missing WHODrug version; if it's present, also checking it's the current version
check_ts_cmdict(TS)
check_ts_cmdict(TS)
TS |
Trial Summary SDTM dataset with variables TSPARMCD and TSVAL |
boolean value if check failed or passed with 'msg' attribute if the test failed
Antony Howard (HackR 2021 Team Pentraxin1)
TS1 <- data.frame( STUDYID = 1, TSPARMCD = "CMDICT", TSVAL = "WHODRUG GLOBAL B3 MARCH 1, 2021", TSVAL2 = "" ) TS2 <- data.frame( STUDYID = 2, TSPARMCD = "CMDICT", TSVAL = "", TSVAL1 = "WHODRUG GLOBAL B3 MARCH 1, 2021" ) TS3 <- data.frame( STUDYID = 3, TSPARMCD = "CMDICT", TSVAL = "" ) TS4 <-data.frame( STUDYID = 4, TSPARMCD = "AEDICT", TSVAL = "" ) TS5 <- data.frame( STUDYID = 5, TSPARMCD = "CMDICT", TSVAL = "meddra 24.0", TSVAL2 = "" ) TS6 <- data.frame( STUDYID = 6, TSPARMCD = "CMDICT", TSVAL = "WHODRUG vGLOBAL B3 MARCH 1, 2021", TSVAL2 = "" ) check_ts_cmdict(TS1) check_ts_cmdict(TS2) check_ts_cmdict(TS3) check_ts_cmdict(TS4) check_ts_cmdict(TS5) check_ts_cmdict(TS6) check_ts_cmdict(rbind(TS1,TS1))
TS1 <- data.frame( STUDYID = 1, TSPARMCD = "CMDICT", TSVAL = "WHODRUG GLOBAL B3 MARCH 1, 2021", TSVAL2 = "" ) TS2 <- data.frame( STUDYID = 2, TSPARMCD = "CMDICT", TSVAL = "", TSVAL1 = "WHODRUG GLOBAL B3 MARCH 1, 2021" ) TS3 <- data.frame( STUDYID = 3, TSPARMCD = "CMDICT", TSVAL = "" ) TS4 <-data.frame( STUDYID = 4, TSPARMCD = "AEDICT", TSVAL = "" ) TS5 <- data.frame( STUDYID = 5, TSPARMCD = "CMDICT", TSVAL = "meddra 24.0", TSVAL2 = "" ) TS6 <- data.frame( STUDYID = 6, TSPARMCD = "CMDICT", TSVAL = "WHODRUG vGLOBAL B3 MARCH 1, 2021", TSVAL2 = "" ) check_ts_cmdict(TS1) check_ts_cmdict(TS2) check_ts_cmdict(TS3) check_ts_cmdict(TS4) check_ts_cmdict(TS5) check_ts_cmdict(TS6) check_ts_cmdict(rbind(TS1,TS1))
This check looks for missing SSTDTC (Study Start Date) in TS; if it's present, check that the date matches the earliest informed consent among any subject enrolled in the study. The FDA Technical Rejection Criteria for Study Data - effective September 15, 2021 requires Study Start Date (https://www.fda.gov/media/100743/download). If missing, no data queries are needed - this would be updating the assignment in the TS domain.
check_ts_sstdtc_ds_consent(DS, TS)
check_ts_sstdtc_ds_consent(DS, TS)
DS |
Disposition SDTM dataset with variables DSCAT, DSSCAT, DSDECOD, DSSTDTC |
TS |
Trial Summary SDTM dataset with variables TSPARMCD, TSPARM, TSVAL |
boolean value if check failed or passed with 'msg' attribute if the test failed
Sara Bodach
TS1 <- data.frame( STUDYID = 1, TSPARMCD = "SSTDTC", TSPARM = "Study Start Date", TSVAL = "2017-01-01", TSVAL1 = "", TSVAL2 = "" ) TS2 <- data.frame( STUDYID = 2, TSPARMCD = "AEDICT", TSPARM = "Study Start Date", TSVAL = "MedDRA v23.0", TSVAL1 = "" ) TS3 <- data.frame( STUDYID = 3, TSPARMCD = "SSTDTC", TSPARM = "Study Start Date", TSVAL = "" ) TS4 <- data.frame( STUDYID = 1, TSPARMCD = "SSTDTC", TSPARM = "Study Start Date", TSVAL = "2020-01-02", TSVAL1 = "", TSVAL2 = "" ) TS5 = rbind(TS1, TS4) TS6 <- data.frame( STUDYID = 1, TSPARMCD = "SSTDTC", TSPARM = "Study Start Date", TSVAL = "2020-01", TSVAL1 = "", TSVAL2 = "" ) DS1 <- data.frame( USUBJID = c(1,1,2,3,4), DSCAT = rep("PROTOCOL MILESTONE", 5), DSSCAT = rep("PROTOCOL MILESTONE", 5), DSDECOD = c("INFORMED CONSENT OBTAINED", "OTHER", "PHYSICIAN DECISION", "OTHER", "INFORMED CONSENT OBTAINED"), DSSTDTC = c("2021-01-01", "2021-01-02", "2021-01-02", "2021-01-02", "2020-01-02"), stringsAsFactors = FALSE ) check_ts_sstdtc_ds_consent(DS=DS1, TS=TS1) check_ts_sstdtc_ds_consent(DS=DS1, TS=TS2) check_ts_sstdtc_ds_consent(DS=DS1, TS=TS3) check_ts_sstdtc_ds_consent(DS=DS1, TS=TS4) check_ts_sstdtc_ds_consent(DS=DS1, TS=TS5) check_ts_sstdtc_ds_consent(DS=DS1, TS=TS6)
TS1 <- data.frame( STUDYID = 1, TSPARMCD = "SSTDTC", TSPARM = "Study Start Date", TSVAL = "2017-01-01", TSVAL1 = "", TSVAL2 = "" ) TS2 <- data.frame( STUDYID = 2, TSPARMCD = "AEDICT", TSPARM = "Study Start Date", TSVAL = "MedDRA v23.0", TSVAL1 = "" ) TS3 <- data.frame( STUDYID = 3, TSPARMCD = "SSTDTC", TSPARM = "Study Start Date", TSVAL = "" ) TS4 <- data.frame( STUDYID = 1, TSPARMCD = "SSTDTC", TSPARM = "Study Start Date", TSVAL = "2020-01-02", TSVAL1 = "", TSVAL2 = "" ) TS5 = rbind(TS1, TS4) TS6 <- data.frame( STUDYID = 1, TSPARMCD = "SSTDTC", TSPARM = "Study Start Date", TSVAL = "2020-01", TSVAL1 = "", TSVAL2 = "" ) DS1 <- data.frame( USUBJID = c(1,1,2,3,4), DSCAT = rep("PROTOCOL MILESTONE", 5), DSSCAT = rep("PROTOCOL MILESTONE", 5), DSDECOD = c("INFORMED CONSENT OBTAINED", "OTHER", "PHYSICIAN DECISION", "OTHER", "INFORMED CONSENT OBTAINED"), DSSTDTC = c("2021-01-01", "2021-01-02", "2021-01-02", "2021-01-02", "2020-01-02"), stringsAsFactors = FALSE ) check_ts_sstdtc_ds_consent(DS=DS1, TS=TS1) check_ts_sstdtc_ds_consent(DS=DS1, TS=TS2) check_ts_sstdtc_ds_consent(DS=DS1, TS=TS3) check_ts_sstdtc_ds_consent(DS=DS1, TS=TS4) check_ts_sstdtc_ds_consent(DS=DS1, TS=TS5) check_ts_sstdtc_ds_consent(DS=DS1, TS=TS6)
This checks for patients with new lesions in TU (TUSTRESC=='NEW') but no Overall Response assessment of PD (Disease Progression) or PMD (Progressive Metabolic Disease) in RS (i.e., (RSTESTCD=='OVRLRESP' and RSSTRESC %in% c('PD','PMD'))). Only applies to assessments by investigator, if TUEVAL and RSEVAL variables available.
check_tu_rs_new_lesions(RS, TU)
check_tu_rs_new_lesions(RS, TU)
RS |
Response SDTM dataset with variables USUBJID, RSSTRESC, RSTESTCD |
TU |
Tumor Identification SDTM dataset with variables USUBJID, TUSTRESC, TUDTC |
TRUE if check passed and FALSE if check failed + 'msg' and 'data' attributes
Will Harris
TU <- data.frame( USUBJID = 1:3, TUSTRESC = c("INV001","NEW","NEW"), TUDTC = "2017-01-01" ) RS <- data.frame( USUBJID = 1:2, RSSTRESC = c("SD","NE") ) # required variable is missing check_tu_rs_new_lesions(RS,TU) RS$RSTESTCD = 'OVRLRESP' # flag USUBJIDs with NEW check_tu_rs_new_lesions(RS,TU) RS$RSSTRESC[2] = "PD" # flag USUBJID with NEW and without PD check_tu_rs_new_lesions(RS,TU) # Metabolic response in heme trials RS$RSSTRESC[2] = "PMD" check_tu_rs_new_lesions(RS,TU) # pass when USUBJIDs with new have PD RS <- data.frame( USUBJID = 1:3, RSSTRESC = c("SD","PD", "PD"), RSTESTCD = "OVRLRESP" ) check_tu_rs_new_lesions(RS,TU) TU$TUEVAL = "INDEPENDENT ASSESSOR" RS$RSEVAL = "INDEPENDENT ASSESSOR" ## pass if by IRF, even if NEW in TU check_tu_rs_new_lesions(RS,TU) RS <- NULL # required dataset missing check_tu_rs_new_lesions(RS,TU)
TU <- data.frame( USUBJID = 1:3, TUSTRESC = c("INV001","NEW","NEW"), TUDTC = "2017-01-01" ) RS <- data.frame( USUBJID = 1:2, RSSTRESC = c("SD","NE") ) # required variable is missing check_tu_rs_new_lesions(RS,TU) RS$RSTESTCD = 'OVRLRESP' # flag USUBJIDs with NEW check_tu_rs_new_lesions(RS,TU) RS$RSSTRESC[2] = "PD" # flag USUBJID with NEW and without PD check_tu_rs_new_lesions(RS,TU) # Metabolic response in heme trials RS$RSSTRESC[2] = "PMD" check_tu_rs_new_lesions(RS,TU) # pass when USUBJIDs with new have PD RS <- data.frame( USUBJID = 1:3, RSSTRESC = c("SD","PD", "PD"), RSTESTCD = "OVRLRESP" ) check_tu_rs_new_lesions(RS,TU) TU$TUEVAL = "INDEPENDENT ASSESSOR" RS$RSEVAL = "INDEPENDENT ASSESSOR" ## pass if by IRF, even if NEW in TU check_tu_rs_new_lesions(RS,TU) RS <- NULL # required dataset missing check_tu_rs_new_lesions(RS,TU)
This check looks for missing TUDTC values and returns a data frame. Only applies to assessments by investigator.
check_tu_tudtc(TU, preproc = identity, ...)
check_tu_tudtc(TU, preproc = identity, ...)
TU |
Tumor Identification SDTM dataset with variables USUBJID, TUDTC, VISIT, TUORRES, TUSPID (optional), TUTESTCD (optional) |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
boolean value if check failed or passed with 'msg' attribute if the test failed
Beeya Na
TU <- data.frame( USUBJID = "1001", TUDTC = "2020-05-05", VISIT = "C1D1", TUORRES = 1:10, TUSPID = "FORMNAME-R:19/L:19XXXX", TUEVAL = "INVESTIGATOR", TUTESTCD = "TUMIDENT", stringsAsFactors = FALSE ) TU$TUDTC[1]="" TU$TUDTC[2]="NA" TU$TUDTC[3]=NA check_tu_tudtc(TU,preproc=roche_derive_rave_row) TU$TUEVAL[1]="" TU$TUTESTCD=NULL check_tu_tudtc(TU,preproc=roche_derive_rave_row) TU$TUEVAL[2]="INDEPENDENT ASSESSOR" TU$TUEVAL[3]="INDEPENDENT ASSESSOR" TU$TUDTC[4]="" check_tu_tudtc(TU) TU$TUSPID=NULL check_tu_tudtc(TU) TU$VISIT=NULL check_tu_tudtc(TU)
TU <- data.frame( USUBJID = "1001", TUDTC = "2020-05-05", VISIT = "C1D1", TUORRES = 1:10, TUSPID = "FORMNAME-R:19/L:19XXXX", TUEVAL = "INVESTIGATOR", TUTESTCD = "TUMIDENT", stringsAsFactors = FALSE ) TU$TUDTC[1]="" TU$TUDTC[2]="NA" TU$TUDTC[3]=NA check_tu_tudtc(TU,preproc=roche_derive_rave_row) TU$TUEVAL[1]="" TU$TUTESTCD=NULL check_tu_tudtc(TU,preproc=roche_derive_rave_row) TU$TUEVAL[2]="INDEPENDENT ASSESSOR" TU$TUEVAL[3]="INDEPENDENT ASSESSOR" TU$TUDTC[4]="" check_tu_tudtc(TU) TU$TUSPID=NULL check_tu_tudtc(TU) TU$VISIT=NULL check_tu_tudtc(TU)
This check identifies records where the same date TUDTC occurs across multiple visits. Only applies to assessments by investigator, selected based on uppercased TUEVAL = "INVESTIGATOR" or missing or TUEVAL variable does not exist.
check_tu_tudtc_across_visit(TU, preproc = identity, ...)
check_tu_tudtc_across_visit(TU, preproc = identity, ...)
TU |
Tumor Identification SDTM dataset with variables USUBJID, TUDTC, VISIT, TUEVAL (optional), TUTESTCD (optional) |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
boolean value if check failed or passed with 'msg' attribute if the test failed.
Will Harris
# records flagged TU <- data.frame(USUBJID = 1, TUDTC = c(rep("2016-01-01",3), rep("2016-06-01",5), rep("2016-06-24",2)), VISIT = c(rep("C1D1",3), rep("C1D2",3), rep("C2D1",4)), TUSPID = "FORMNAME-R:13/L:13XXXX", stringsAsFactors=FALSE) check_tu_tudtc_across_visit(TU) check_tu_tudtc_across_visit(TU, preproc=roche_derive_rave_row) # no records flagged because non-Investigator results TU2 <- TU TU2$TUEVAL <- "INDEPENDENT ASSESSOR" check_tu_tudtc_across_visit(TU2) check_tu_tudtc_across_visit(TU2, preproc=roche_derive_rave_row) # example with TUTESTCD and with records flagged TU3 <- TU TU3$TUTESTCD = c(rep("TUMIDENT", 2), rep("OTHER", 2), rep("TUMIDENT", 2), rep("OTHER", 2), rep("TUMIDENT", 2)) check_tu_tudtc_across_visit(TU3) check_tu_tudtc_across_visit(TU3, preproc=roche_derive_rave_row) # example without TUSPID and with records flagged TU4 <- TU TU4$TUSPID <- NULL check_tu_tudtc_across_visit(TU4) check_tu_tudtc_across_visit(TU4, preproc=roche_derive_rave_row) # example with required variable missing TU5 <- TU TU5$VISIT <- NULL check_tu_tudtc_across_visit(TU5) check_tu_tudtc_across_visit(TU5, preproc=roche_derive_rave_row)
# records flagged TU <- data.frame(USUBJID = 1, TUDTC = c(rep("2016-01-01",3), rep("2016-06-01",5), rep("2016-06-24",2)), VISIT = c(rep("C1D1",3), rep("C1D2",3), rep("C2D1",4)), TUSPID = "FORMNAME-R:13/L:13XXXX", stringsAsFactors=FALSE) check_tu_tudtc_across_visit(TU) check_tu_tudtc_across_visit(TU, preproc=roche_derive_rave_row) # no records flagged because non-Investigator results TU2 <- TU TU2$TUEVAL <- "INDEPENDENT ASSESSOR" check_tu_tudtc_across_visit(TU2) check_tu_tudtc_across_visit(TU2, preproc=roche_derive_rave_row) # example with TUTESTCD and with records flagged TU3 <- TU TU3$TUTESTCD = c(rep("TUMIDENT", 2), rep("OTHER", 2), rep("TUMIDENT", 2), rep("OTHER", 2), rep("TUMIDENT", 2)) check_tu_tudtc_across_visit(TU3) check_tu_tudtc_across_visit(TU3, preproc=roche_derive_rave_row) # example without TUSPID and with records flagged TU4 <- TU TU4$TUSPID <- NULL check_tu_tudtc_across_visit(TU4) check_tu_tudtc_across_visit(TU4, preproc=roche_derive_rave_row) # example with required variable missing TU5 <- TU TU5$VISIT <- NULL check_tu_tudtc_across_visit(TU5) check_tu_tudtc_across_visit(TU5, preproc=roche_derive_rave_row)
This check identifies TUDTC values that are duplicated or earlier than last visit's. Unscheduled visits are excluded.
check_tu_tudtc_visit_ordinal_error(TU)
check_tu_tudtc_visit_ordinal_error(TU)
TU |
Tumor Identification SDTM dataset with variables USUBJID,TUORRES ,TULOC, VISITNUM, VISIT, TUDTC, TUEVAL |
boolean value if check failed or passed with 'msg' attribute if the test failed
Jingyuan Chen
# no case TU <- data.frame(USUBJID = 101:102, TUORRES = rep(c("NEW", "TARGET"), 5), TULOC=rep(c("BONE","LIVER"),5), TUDTC = rep(c("2017-01-01T08:25", "2017-01-05T09:25", "2017-01-15T10:25","2017-01-20T08:25","2017-01-25T08:25"), 2), VISITNUM = rep(1:5,2), VISIT = rep(c( "Visit 1", "Visit 2", "Visit 3", "Visit 4","VIsit 5"), 2), TUEVAL="INVESTIGATOR", stringsAsFactors = FALSE) check_tu_tudtc_visit_ordinal_error(TU) # adding cases with earler date TU$TUDTC[TU$USUBJID == 101 & TU$VISIT == "Visit 4"] <- "2017-01-10T08:25" TU$TUDTC[TU$USUBJID == 102 & TU$VISIT == "Visit 2"] <- "2017-01-01T06:25" check_tu_tudtc_visit_ordinal_error(TU) # adding cases with duplicated date TU$TUDTC[TU$USUBJID == 101 & TU$VISIT == "Visit 5"] <- "2017-01-10T08:25" TU$TUDTC[TU$USUBJID == 102 & TU$VISIT == "Visit 3"] <- "2017-01-01T06:25" check_tu_tudtc_visit_ordinal_error(TU)
# no case TU <- data.frame(USUBJID = 101:102, TUORRES = rep(c("NEW", "TARGET"), 5), TULOC=rep(c("BONE","LIVER"),5), TUDTC = rep(c("2017-01-01T08:25", "2017-01-05T09:25", "2017-01-15T10:25","2017-01-20T08:25","2017-01-25T08:25"), 2), VISITNUM = rep(1:5,2), VISIT = rep(c( "Visit 1", "Visit 2", "Visit 3", "Visit 4","VIsit 5"), 2), TUEVAL="INVESTIGATOR", stringsAsFactors = FALSE) check_tu_tudtc_visit_ordinal_error(TU) # adding cases with earler date TU$TUDTC[TU$USUBJID == 101 & TU$VISIT == "Visit 4"] <- "2017-01-10T08:25" TU$TUDTC[TU$USUBJID == 102 & TU$VISIT == "Visit 2"] <- "2017-01-01T06:25" check_tu_tudtc_visit_ordinal_error(TU) # adding cases with duplicated date TU$TUDTC[TU$USUBJID == 101 & TU$VISIT == "Visit 5"] <- "2017-01-10T08:25" TU$TUDTC[TU$USUBJID == 102 & TU$VISIT == "Visit 3"] <- "2017-01-01T06:25" check_tu_tudtc_visit_ordinal_error(TU)
This check looks for target lesions with missing TULOC values and returns a data frame. Only applies to assessments by investigator.
check_tu_tuloc_missing(TU, preproc = identity, ...)
check_tu_tuloc_missing(TU, preproc = identity, ...)
TU |
Tumor Identification SDTM dataset with variables USUBJID, TUDTC, VISIT, TUORRES, TULOC, TUSPID (optional) |
preproc |
An optional company specific preprocessing script |
... |
Other arguments passed to methods |
boolean value if check failed or passed with 'msg' attribute if the test failed
Will Harris
TU <- data.frame( USUBJID = 1:10, TUDTC = 1:10, VISIT = "C1D1", TUORRES = "TARGET", TULOC = "LIVER", TUSPID = "FORMNAME-R:19/L:19XXXX", stringsAsFactors=FALSE ) check_tu_tuloc_missing(TU) TU$TULOC[1] = "NA" TU$TULOC[2] = "" TU$TULOC[3] = NA check_tu_tuloc_missing(TU,preproc=roche_derive_rave_row) TU$TUSPID <- NULL check_tu_tuloc_missing(TU)
TU <- data.frame( USUBJID = 1:10, TUDTC = 1:10, VISIT = "C1D1", TUORRES = "TARGET", TULOC = "LIVER", TUSPID = "FORMNAME-R:19/L:19XXXX", stringsAsFactors=FALSE ) check_tu_tuloc_missing(TU) TU$TULOC[1] = "NA" TU$TULOC[2] = "" TU$TULOC[3] = NA check_tu_tuloc_missing(TU,preproc=roche_derive_rave_row) TU$TUSPID <- NULL check_tu_tuloc_missing(TU)
This check looks for both records where height is missing as well as DM patients with no height records at all
check_vs_height(VS, DM)
check_vs_height(VS, DM)
VS |
Vital Signs SDTM dataset with variables USUBJID,VSTEST,VSTESTCD,VSSTRESN,VISIT |
DM |
Demographics SDTM dataset with variable USUBJID |
boolean value if check failed or passed with 'msg' attribute if the test failed
Sara Bodach
DM <- data.frame( STUDYID = 1, USUBJID = 1:10 ) VS <- data.frame( STUDYID = 1, USUBJID = 1:10, VSTEST = "HEIGHT", VSTESTCD = "HEIGHT", VSSTRESN = 1:10, VISIT = 1:10 ) check_vs_height(VS,DM) DM <- data.frame( STUDYID = 1, USUBJID = 1:11 ) VS$VSSTRESN[1] = NA VS$VSSTRESN[2] = "NA" VS$VSSTRESN[3] = "" VS$VSSTRESN[4] = "." check_vs_height(VS,DM)
DM <- data.frame( STUDYID = 1, USUBJID = 1:10 ) VS <- data.frame( STUDYID = 1, USUBJID = 1:10, VSTEST = "HEIGHT", VSTESTCD = "HEIGHT", VSSTRESN = 1:10, VISIT = 1:10 ) check_vs_height(VS,DM) DM <- data.frame( STUDYID = 1, USUBJID = 1:11 ) VS$VSSTRESN[1] = NA VS$VSSTRESN[2] = "NA" VS$VSSTRESN[3] = "" VS$VSSTRESN[4] = "." check_vs_height(VS,DM)
This check looks for non-missing diastolic BP is not higher than non-missing systolic BP
check_vs_sbp_lt_dbp(VS)
check_vs_sbp_lt_dbp(VS)
VS |
Vital Signs SDTM dataset with variables USUBJID,VISIT,VSDTC,VSTESTCD,VSSTRESN,VSSPID |
boolean value if check failed or passed with 'msg' attribute if the test failed
vs <- data.frame( STUDYID = 1, USUBJID = 1, VSSPID = c("1","2","1","2"), VISIT = 1, VSDTC = c("2010-01-01","2010-01-01","2010-01-01","2010-01-01"), VSTESTCD = c("SYSBP","SYSBP", "DIABP","DIABP") , VSSTRESN = c(80,120,100,80) ) vs0 <- subset(vs, select = c(USUBJID, VSSPID, VSSTRESN)) check_vs_sbp_lt_dbp(VS=vs) check_vs_sbp_lt_dbp(VS=vs0)
vs <- data.frame( STUDYID = 1, USUBJID = 1, VSSPID = c("1","2","1","2"), VISIT = 1, VSDTC = c("2010-01-01","2010-01-01","2010-01-01","2010-01-01"), VSTESTCD = c("SYSBP","SYSBP", "DIABP","DIABP") , VSSTRESN = c(80,120,100,80) ) vs0 <- subset(vs, select = c(USUBJID, VSSPID, VSSTRESN)) check_vs_sbp_lt_dbp(VS=vs) check_vs_sbp_lt_dbp(VS=vs0)
This check looks for VS dates that occur after death date
check_vs_vsdtc_after_dd(AE, DS, VS)
check_vs_vsdtc_after_dd(AE, DS, VS)
AE |
Adverse Event SDTM dataset with variables USUBJID, AEDTHDTC, AESTDTC, AEDECOD, and AETERM |
DS |
Disposition SDTM dataset with variables USUBJID, DSSTDTC, DSDECOD, and DSTERM |
VS |
Vital Signs SDTM dataset with variables USUBJID, VSDTC, VSTESTCD, and VSORRES |
Boolean value for whether the check passed or failed, with 'msg' attribute if the check failed
Nina Ting Qi
AE <- data.frame(STUDYID = 1:5, USUBJID = LETTERS[1:5], AEDTHDTC = c(rep("", 4), "2016-01-01"), AESTDTC = rep("2016-01-01", 5), AEDECOD = LETTERS[1:5], AETERM = LETTERS[1:5], stringsAsFactors = FALSE) DS <- data.frame(STUDYID = 1:5, USUBJID = LETTERS[1:5], DSSTDTC = rep("2016-01-02", 5), DSDECOD = c(LETTERS[1:4], "death"), DSTERM = letters[1:5], stringsAsFactors = FALSE) VS <- data.frame(STUDYID = 1:5, USUBJID = LETTERS[1:5], VSDTC = rep("2015-12-31", 5), VSTESTCD = letters[1:5], VSORRES = 1:5, stringsAsFactors = FALSE) check_vs_vsdtc_after_dd(AE, DS, VS) VS$VSDTC[1] <- "2016-01-03" VS$USUBJID[1] <- VS$USUBJID[5] check_vs_vsdtc_after_dd(AE, DS, VS)
AE <- data.frame(STUDYID = 1:5, USUBJID = LETTERS[1:5], AEDTHDTC = c(rep("", 4), "2016-01-01"), AESTDTC = rep("2016-01-01", 5), AEDECOD = LETTERS[1:5], AETERM = LETTERS[1:5], stringsAsFactors = FALSE) DS <- data.frame(STUDYID = 1:5, USUBJID = LETTERS[1:5], DSSTDTC = rep("2016-01-02", 5), DSDECOD = c(LETTERS[1:4], "death"), DSTERM = letters[1:5], stringsAsFactors = FALSE) VS <- data.frame(STUDYID = 1:5, USUBJID = LETTERS[1:5], VSDTC = rep("2015-12-31", 5), VSTESTCD = letters[1:5], VSORRES = 1:5, stringsAsFactors = FALSE) check_vs_vsdtc_after_dd(AE, DS, VS) VS$VSDTC[1] <- "2016-01-03" VS$USUBJID[1] <- VS$USUBJID[5] check_vs_vsdtc_after_dd(AE, DS, VS)
Function that uses sdtmchecksmeta as input and creates .R file with function calls
create_R_script( metads = sdtmchecksmeta, file = "sdtmchecks_run_all.R", verbose = TRUE )
create_R_script( metads = sdtmchecksmeta, file = "sdtmchecks_run_all.R", verbose = TRUE )
metads |
sdtmchecksmeta file |
file |
filename and/or path to save to |
verbose |
Print information to console |
R script with user specified sdtmchecks based on sdtmchecksmeta file
Monarch Shah
Reporting-related utility functions
convert_var_to_ascii()
,
truncate_var_strings()
# All checks are output to a file fileName <- file.path(tempdir(), "run_all_checks.R") create_R_script(file = fileName) # Only include selected checks fileName <- file.path(tempdir(), "run_some_checks.R") mymetads = sdtmchecksmeta[sdtmchecksmeta$category == "ALL" & sdtmchecksmeta$priority == "High",] create_R_script(metads = mymetads, file = fileName) # Roche specific function calls fileName <- file.path(tempdir(), "run_all_checks_roche.R") mymetads = sdtmchecksmeta mymetads$fxn_in=mymetads$fxn_in_roche create_R_script(metads = mymetads, file = fileName)
# All checks are output to a file fileName <- file.path(tempdir(), "run_all_checks.R") create_R_script(file = fileName) # Only include selected checks fileName <- file.path(tempdir(), "run_some_checks.R") mymetads = sdtmchecksmeta[sdtmchecksmeta$category == "ALL" & sdtmchecksmeta$priority == "High",] create_R_script(metads = mymetads, file = fileName) # Roche specific function calls fileName <- file.path(tempdir(), "run_all_checks_roche.R") mymetads = sdtmchecksmeta mymetads$fxn_in=mymetads$fxn_in_roche create_R_script(metads = mymetads, file = fileName)
This report will identify flagged records from an sdtmchecks report that are "new" and those that are "old" for a study. This will help quickly target newly emergent issues that may require a new query or investigation while indicating issues that were encountered from a prior report and may have already been queried.
This diff_reports()
function requires a newer and older set of results from
sdtmchecks::run_all_checks()
, which will generate a list of check results.
An added column "Status" is created with values of "NEW" and "OLD"
in the list of check results, flagging whether a given record that is present
in the new result (ie new_report
) is also present in the old result (ie old_report
).
It makes a difference which report is defined as "new" and "old".
This code only keeps results flagged in the new report and drops
old results not in the new report because they were presumably resolved.
diff_reports(old_report, new_report)
diff_reports(old_report, new_report)
old_report |
an older sdtmchecks list object as created by |
new_report |
a newer sdtmchecks list object as created by |
list of sdtmchecks results based on new_report with Status indicator
Example programs for running data checks
report_to_xlsx()
,
run_all_checks()
,
run_check()
# Step 1: Simulate an older AE dataset with one missing preferred term ae <- data.frame( USUBJID = 1:5, DOMAIN = c(rep("AE", 5)), AESEQ = 1:5, AESTDTC = 1:5, AETERM = 1:5, AEDECOD = 1:5, AESPID = c("FORMNAME-R:13/L:13XXXX", "FORMNAME-R:16/L:16XXXX", "FORMNAME-R:2/L:2XXXX", "FORMNAME-R:19/L:19XXXX", "FORMNAME-R:5/L:5XXXX"), stringsAsFactors = FALSE ) ae$AEDECOD[1] = NA # Step 2: Use the run_all_checks() function to generate list of check results on this "old" data # Filter sdtmchecksmeta so that only one check is present metads <- sdtmchecksmeta[sdtmchecksmeta$check=="check_ae_aedecod",] old <- run_all_checks(metads=metads) #Step 3: Simulate a newer, updated AE dataset with another record with a new missing preferred term ae <- data.frame( USUBJID = 1:6, DOMAIN = c(rep("AE", 6)), AESEQ = 1:6, AESTDTC = 1:6, AETERM = 1:6, AEDECOD = 1:6, AESPID = c("FORMNAME-R:13/L:13XXXX", "FORMNAME-R:16/L:16XXXX", "FORMNAME-R:2/L:2XXXX", "FORMNAME-R:19/L:19XXXX", "FORMNAME-R:5/L:5XXXX", "FORMNAME-R:1/L:5XXXX" ), stringsAsFactors = FALSE ) ae$AEDECOD[1] = NA ae$AEDECOD[6] = NA # Step 4: use the run_all_checks() function to generate list of check results on this "new" data new <- run_all_checks(metads=metads) # Step 5: Diff to create a column indicating if the finding is new res <- diff_reports(old_report=old, new_report=new) ## optionally output results as spreadsheet with sdtmchecks::report_to_xlsx() # report_to_xlsx(res, outfile=paste0("saved_reports/sdtmchecks_diff_",Sys.Date(),".xlsx"))
# Step 1: Simulate an older AE dataset with one missing preferred term ae <- data.frame( USUBJID = 1:5, DOMAIN = c(rep("AE", 5)), AESEQ = 1:5, AESTDTC = 1:5, AETERM = 1:5, AEDECOD = 1:5, AESPID = c("FORMNAME-R:13/L:13XXXX", "FORMNAME-R:16/L:16XXXX", "FORMNAME-R:2/L:2XXXX", "FORMNAME-R:19/L:19XXXX", "FORMNAME-R:5/L:5XXXX"), stringsAsFactors = FALSE ) ae$AEDECOD[1] = NA # Step 2: Use the run_all_checks() function to generate list of check results on this "old" data # Filter sdtmchecksmeta so that only one check is present metads <- sdtmchecksmeta[sdtmchecksmeta$check=="check_ae_aedecod",] old <- run_all_checks(metads=metads) #Step 3: Simulate a newer, updated AE dataset with another record with a new missing preferred term ae <- data.frame( USUBJID = 1:6, DOMAIN = c(rep("AE", 6)), AESEQ = 1:6, AESTDTC = 1:6, AETERM = 1:6, AEDECOD = 1:6, AESPID = c("FORMNAME-R:13/L:13XXXX", "FORMNAME-R:16/L:16XXXX", "FORMNAME-R:2/L:2XXXX", "FORMNAME-R:19/L:19XXXX", "FORMNAME-R:5/L:5XXXX", "FORMNAME-R:1/L:5XXXX" ), stringsAsFactors = FALSE ) ae$AEDECOD[1] = NA ae$AEDECOD[6] = NA # Step 4: use the run_all_checks() function to generate list of check results on this "new" data new <- run_all_checks(metads=metads) # Step 5: Diff to create a column indicating if the finding is new res <- diff_reports(old_report=old, new_report=new) ## optionally output results as spreadsheet with sdtmchecks::report_to_xlsx() # report_to_xlsx(res, outfile=paste0("saved_reports/sdtmchecks_diff_",Sys.Date(),".xlsx"))
This function runs all checks in the sdtmchecks package. It expects SDTM domains saved as dataframe objects in your global environment. These dataframes should have lowercase names, e.g., dm.
run_all_checks( metads = sdtmchecksmeta, priority = c("High", "Medium", "Low"), type = c("ALL", "ONC", "COVID", "PRO", "OPHTH"), verbose = TRUE, ncores = 1 )
run_all_checks( metads = sdtmchecksmeta, priority = c("High", "Medium", "Low"), type = c("ALL", "ONC", "COVID", "PRO", "OPHTH"), verbose = TRUE, ncores = 1 )
metads |
Metadata to use to execute the checks. The default is the sdtmchecksmeta dataframe available in the package. This object could easily be customized, subset, etc. |
priority |
Priority level of data checks, i.e., c("High", "Medium", "Low"). NULL runs all priority levels. |
type |
Type of data checks, i.e., c("ALL", "ONC", "COV", "PRO", "OPHTH"). NULL runs all type. |
verbose |
Whether to display messages while running |
ncores |
Number of cores for parallel processing, with default set to 1 (sequential) |
To look up documentation for the data checks in package, please use command ??sdtmchecks
list with results from individual data check functions
Example programs for running data checks
diff_reports()
,
report_to_xlsx()
,
run_check()
# Assuming sdtm datasets are in your global environment # Note we are only specifying AE and DS here so all unrelated checks wont be run ae <- data.frame( STUDYID = 1, USUBJID = c(1,2,3,1,2,3), AESTDTC = '2020-05-05', AETERM = c("abc Covid-19", "covid TEST POSITIVE",rep("other AE",4)), AEDECOD = c("COVID-19", "CORONAVIRUS POSITIVE", rep("OTHER AE",4)), AEACN = c("DRUG WITHDRAWN", rep("DOSE NOT CHANGED",5)), AESPID = "FORMNAME-R:13/L:13XXXX", stringsAsFactors = FALSE ) ds <- data.frame( USUBJID = c(1,1,2,3,4), DSSPID = 'XXX-DISCTX-XXX', DSCAT = "DISPOSITION EVENT", DSDECOD = "OTHER REASON", DSSEQ = c(1,2,1,1,1), stringsAsFactors = FALSE ) all_rec<-run_all_checks(metads=sdtmchecksmeta, verbose=FALSE)
# Assuming sdtm datasets are in your global environment # Note we are only specifying AE and DS here so all unrelated checks wont be run ae <- data.frame( STUDYID = 1, USUBJID = c(1,2,3,1,2,3), AESTDTC = '2020-05-05', AETERM = c("abc Covid-19", "covid TEST POSITIVE",rep("other AE",4)), AEDECOD = c("COVID-19", "CORONAVIRUS POSITIVE", rep("OTHER AE",4)), AEACN = c("DRUG WITHDRAWN", rep("DOSE NOT CHANGED",5)), AESPID = "FORMNAME-R:13/L:13XXXX", stringsAsFactors = FALSE ) ds <- data.frame( USUBJID = c(1,1,2,3,4), DSSPID = 'XXX-DISCTX-XXX', DSCAT = "DISPOSITION EVENT", DSDECOD = "OTHER REASON", DSSEQ = c(1,2,1,1,1), stringsAsFactors = FALSE ) all_rec<-run_all_checks(metads=sdtmchecksmeta, verbose=FALSE)
This function runs a single check in the sdtmchecks package. It expects a check name, the function that performs the check and some info for the pdf and Excel files. It also expects a T/F value that determines whether to display messages while running. Excluding verbose, the parameters for this function are usually passed to it by filtering the metads to only contain the row corresponding to the check of interest, and then assigning each parameter as the contents of the eponymous column of metads (see example below). This is because this function is mostly run inside of an mcmapply in the run_all_checks_parallel function, which loops over the checks in the rows of metads.
run_check( check, fxn_in, xls_title, pdf_title, pdf_subtitle, pdf_return, verbose )
run_check( check, fxn_in, xls_title, pdf_title, pdf_subtitle, pdf_return, verbose )
check |
Check name. |
fxn_in |
Function performing the check. |
xls_title |
Excel title. |
pdf_title |
PDF title. |
pdf_subtitle |
PDF subtitle. |
pdf_return |
Text to display in PDF if check does not run. |
verbose |
Whether to display messages while running |
to look up documentation for the data checks package, please use command ??sdtmchecks
list with results from the check.
Example programs for running data checks
diff_reports()
,
report_to_xlsx()
,
run_all_checks()
# Assuming sdtm datasets are in your global environment ae <- data.frame( USUBJID = 1:5, DOMAIN = c(rep("AE", 5)), AESEQ = 1:5, AESTDTC = 1:5, AETERM = 1:5, AEDECOD = 1:5, AESPID = c("FORMNAME-R:13/L:13XXXX", "FORMNAME-R:16/L:16XXXX", "FORMNAME-R:2/L:2XXXX", "FORMNAME-R:19/L:19XXXX", "FORMNAME-R:5/L:5XXXX"), stringsAsFactors = FALSE ) ae$AEDECOD[1] = NA # Filter sdtmchecksmeta so that only one check is present metads <- sdtmchecksmeta[sdtmchecksmeta$check=="check_ae_aedecod",] run_check( check = metads$check, fxn_in = metads$fxn_in, xls_title = metads$xls_title, pdf_title = metads$pdf_title, pdf_subtitle = metads$pdf_subtitle, pdf_return = metads$pdf_return, verbose = FALSE )
# Assuming sdtm datasets are in your global environment ae <- data.frame( USUBJID = 1:5, DOMAIN = c(rep("AE", 5)), AESEQ = 1:5, AESTDTC = 1:5, AETERM = 1:5, AEDECOD = 1:5, AESPID = c("FORMNAME-R:13/L:13XXXX", "FORMNAME-R:16/L:16XXXX", "FORMNAME-R:2/L:2XXXX", "FORMNAME-R:19/L:19XXXX", "FORMNAME-R:5/L:5XXXX"), stringsAsFactors = FALSE ) ae$AEDECOD[1] = NA # Filter sdtmchecksmeta so that only one check is present metads <- sdtmchecksmeta[sdtmchecksmeta$check=="check_ae_aedecod",] run_check( check = metads$check, fxn_in = metads$fxn_in, xls_title = metads$xls_title, pdf_title = metads$pdf_title, pdf_subtitle = metads$pdf_subtitle, pdf_return = metads$pdf_return, verbose = FALSE )
A dataset containing the SDTM checks in the package. The data can be used as input into functions.
data(sdtmchecksmeta)
data(sdtmchecksmeta)
A data frame with a row for each R check in the package:
R check name, without .R file extension
Therapeutic area grouping
High, Medium, Low
SDTM domains used in function
Excel title for tab
PDF title for check
PDF subtitle for check, with * at the start of each subtitle line
PDF return message when SDTM domain not available
explicit string input of domain name(s) into R check function
explicit string input of domain name(s) into R check function, Roche specific
Is this related to mapping? i.e. Not a site issue.
explicit string input to check existence of SDTM domain(s) before running check
data(sdtmchecksmeta) head(sdtmchecksmeta[,1:5])
data(sdtmchecksmeta) head(sdtmchecksmeta[,1:5])