Package: mtdesign (via r-universe)

September 6, 2024

Type Package

Title Mander and Thompson Designs

Version 0.1.1

Date 2022-10-04

Description Implements Mander & Thompson's (2010)

<doi:10.1016/j.cct.2010.07.008> methods for two-stage designs optimal under the alternative hypothesis for phase II [cancer] trials. Also provides an implementation of Simon's (1989) <doi:10.1016/0197-2456(89)90015-9> original methodology and allows exploration of the operating characteristics of sub-optimal designs.

Language en-GB

License GPL (\geq = 3)

Encoding UTF-8

LazyData true

URL https://github.com/openpharma/mtdesign

BugReports https://github.com/openpharma/mtdesign/issues

RoxygenNote 7.2.3

Imports dplyr, futile.logger, ggplot2, magrittr, methods, Rcpp, rlang, tibble, tidyr

LinkingTo Rcpp, BH

Suggests covr, parallel, testthat (>= 3.0.0)

Config/testthat/edition 3

Repository https://pharmaverse.r-universe.dev

RemoteUrl https://github.com/openpharma/mtdesign

RemoteRef HEAD

RemoteSha 8a68fe003f817b0a22a6db1a29823211cf19fdf5

augmentGrid

Contents

augmentGrid																					2
createGrid			•																		3
obtainDesign																					4
powerPlot																					5
searchBounds																				•	6
																					7

Index

augmentGrid	Augment a grid of candidate designs with type 1 and type 2 error prob-
	abilities, expected sample sizes and probabilities of early termination

Description

Augment a grid of candidate designs with type 1 and type 2 error probabilities, expected sample sizes and probabilities of early termination

Usage

augmentGrid(d, parallel = TRUE, cores = NA, minChunkSize = 1e+05)

Arguments

d	a tibble created by 'createGrid'
parallel	use parallelisation if available
cores	the number of cores to use when parallelising. If <code>NA</code> , all available cores are requested
minChunkSize	The minimum size of the grid before paralellisation is attempted

Value

an augmented grid tibble

Usage Notes

Regardless of the value of 'parallel', parallelisation is only used if the size of the grid is greater than <code>chunkSize</code>. If paralellisation is requested and needed, an exception is thrown if the parallel package is not available.

Examples

```
x <- createGrid(p0 = 0.1, p1 = 0.30, alpha = 0.1, beta = 0.1, nMin = 24, nMax = 32) %>%
augmentGrid(parallel = FALSE)
```

2

createGrid

Description

Create a grid of candidate designs

Usage

```
createGrid(
  p0,
  p1,
  alpha = 0.1,
  beta = NA,
  power = ifelse(is.na(beta), 0.9, 1 - beta),
  nMin = NA,
  nMax = NA,
  mander = TRUE
)
```

Arguments

p0	the response rate under the null hypothesis
р1	the response rate under the alternate hypothesis
alpha	the desired (one-sided) type 1 error rate
beta	the desired type 2 error rate
power	an alternative to beta
nMin	the lower bound for the search grid. If NA, searchBounds is called to provide an appropriate value
nMax	the lower bound for the search grid. If NA, searchBounds is called to provide an appropriate value
mander	is a Mander & Thompson or a Simon's design required?

Value

a tibble. See Usage notes for a list and description of columns.

Examples

```
# Standard use for a Simon's 2-stage design
x <- createGrid(p0 = 0.1, p1 = 0.5, alpha = 0.1, beta = 0.1, mander = FALSE)
# Custom search bounds for a Mander & Thompson design
y <- createGrid(p0 = 0.1, p1 = 0.4, alpha = 0.1, beta = 0.1, nMin = 20, nMax = 30)</pre>
```

obtainDesign

Description

obtainDesign is essentially a wrapper for calls to createGrid and augmentGrid followed by some simple filtering of the candidate designs to identify the optimal and minimax designs.

Usage

```
obtainDesign(
 grid = NULL,
 p0 = NA,
 p1 = NA,
 alpha = ifelse(is.null(grid), 0.05, NA),
 beta = ifelse(is.null(grid), 0.1, NA),
 fullGrid = FALSE,
 ...
)
```

Arguments

grid	Optional. A tibble created by createGrid. If NULL, then p0, p1, alpha and beta must be specified and createGrid is called to generate the required grid. If not NULL then p0, p1, alpha and beta are ignored
p0	the response rate under the null hypothesis
p1	the response rate under the alternate hypothesis
alpha	the desired (one-sided) type 1 error rate
beta	the desired type 2 error rate
fullGrid	should the full grid of all possible designs be returned, or simply the optimal and minimax solutions? For a Mander and Thompson design, optimal and minimax designs are returned for both the null and alternate hypotheses. See Usage Notes below.
	passed to 'createGrid' or 'augmentGrid'. In particular mander=TRUE for a Man- der & Thompson design or mander=FALSE for a Simon's 2-stage design.

Value

a tibble created by createGrid. If fullGrid == FALSE the table contains an additional column, Criterion indicating the type of design. Possible values for Criterion are "optimal" and "minimax" for Simon's designs and "optimalNull", "optimalAlt", "minimaxNull" and "minimaxAlt" for Mander & Thompson designs.

powerPlot

Usage notes

If grid is not NULL it is possible that none of the candidate designs are acceptable (that is, satisfy both the significance level and power requirements). If this is the case and fullGrid == FALSE, then an empty tibble is returned. If versbose == TRUE a warning message is also printed. If fullGrid == TRUE the full grid of all designs considered is returned. This can then be further interrogated to find optimal designs under constraints - for example with fixed stage sizes.

Examples

```
# Standard use (Simon's 2-stage design)
createGrid(p0 = 0.05, p1 = 0.25, alpha = 0.05, beta = 0.2, mander = FALSE) %>%
    augmentGrid(parallel = FALSE) %>%
    obtainDesign()
# Constrained stage sizes
createGrid(p0 = 0.25, p1 = 0.45, alpha = 0.05, beta = 0.2) %>%
    dplyr::filter(nStage1 == 8) %>%
    augmentGrid(parallel = FALSE) %>%
    obtainDesign()
```

powerPlot

Plot the power curve(s) for the given design(s)

Description

Plot the power curve(s) for the given design(s)

Usage

powerPlot(grid, probs = seq(0, 1, 0.01))

Arguments

grid	the tibble containing the designs to be plotted
probs	the response rates for which the rejection probabilities are to be plotted

Value

the ggplot object containing the power curve(s)

Examples

```
createGrid(p0 = 0.05, p1 = 0.25, alpha = 0.05, beta = 0.2, mander = FALSE) %>%
    augmentGrid(cores = 2) %>%
    obtainDesign() %>%
    powerPlot(probs = seq(0, 0.5, 0.025))
```

searchBounds

Description

The formula used is the continuity corrected Normal approximation from Fleiss et al (2003).

Usage

searchBounds(p0, p1, alpha = 0.05, beta = 0.2, twoSided = TRUE)

Arguments

p0	the response rate under the null hypothesis
p1	the response rate under the alternate hypothesis
alpha	the desired (one-sided) type 1 error rate
beta	the desired type 2 error rate
twoSided	two- or one-sided significance level?

Value

a list with three elements: "n" - the single stage sample size from Fleiss et al; "min" - the lower bound, 0.8*n; "max" - the upper bound, 2*n. floor() and ceiling() are applied as appropriate.

Index

augmentGrid, 2, 4

createGrid, 3, 4

obtainDesign,4

powerPlot, 5

searchBounds, 6