--- title: "Example Wrapped Approach" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Example Wrapped Approach} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` # Introduction This article is an example workflow of the wrapped approach where modules are wrapped into a cut_data function. # Example ```{r, message=FALSE, warning=FALSE} # Name: Datacut Template Code - Modular Approach # Creating data to be cut ------------------------------------------------ library(datacutr) library(admiraldev) library(dplyr) library(lubridate) library(stringr) library(purrr) # Name: Datacut Template Code - Wrapped Approach # Creating data to be cut ------------------------------------------------ source_data <- list( ds = datacutr_ds, dm = datacutr_dm, ae = datacutr_ae, sc = datacutr_sc, lb = datacutr_lb, fa = datacutr_fa, ts = datacutr_ts ) # Create DCUT ------------------------------------------------------------ dcut <- create_dcut( dataset_ds = source_data$ds, ds_date_var = DSSTDTC, filter = DSDECOD == "RANDOMIZATION", cut_date = "2022-06-04", cut_description = "Clinical Cutoff Date" ) # Pre-processing of FA ---------------------------------------------------- # Update FA source_data$fa <- source_data$fa %>% mutate(DCUT_TEMP_FAXDTC = case_when( FASTDTC != "" ~ FASTDTC, FADTC != "" ~ FADTC, TRUE ~ as.character(NA) )) # Process data cut -------------------------------------------------------- cut_data <- process_cut( source_sdtm_data = source_data, patient_cut_v = c("sc", "ds"), date_cut_m = rbind( c("ae", "AESTDTC"), c("lb", "LBDTC"), c("fa", "DCUT_TEMP_FAXDTC") ), no_cut_v = c("ts"), dataset_cut = dcut, cut_var = DCUTDTM, special_dm = TRUE ) ```