There are two key relationships that we will explore. The first is a
relationship of srcref
objects, and the second is the
relationship between namespace object definitions and their associated
documentation.
Before we begin, we’ll set up a demo coverage object and package namespace that we can use to showcase these relationships:
library(withr)
library(covr)
withr::with_temp_libpaths({
options(keep.source = TRUE, keep.source.pkg = TRUE, covr.record_tests = TRUE)
examplepkg_source_path <- system.file("examplepkg", package = "covtracer")
install.packages(
examplepkg_source_path,
type = "source",
repos = NULL,
INSTALL_opts = c("--with-keep.source", "--install-tests")
)
examplepkg_cov <- covr::package_coverage(examplepkg_source_path)
examplepkg_ns <- getNamespace("examplepkg")
})
srcref
dataFirst and foremost, we want to be able to associate
srcref
objects. These relationships are define the location
of code. A srecref
describes a region of code where the
expression was pulled from, and we can compare these to determine
whether a srcref
is within, containing or independent of
another.
This vignette will gloss over each of these tables. For more details
see the Working with srcref
s vignette.
covr
traces to package object
srcref
sIt’s important to note that coverage traces always sit within a
package namespace object. Where a namespace object might have a
srcref
to the full code for a function, coverage traces
trace individual expressions within that function.
To associate srcref
s by this relation, we provide a
special joining function to combine data.frames
by
srcref
columns.
Just looking at these two data.frames
, we can use the
first trace and package object to illustrate the relationship:
cat("pkg : ", format(pkg_ns_df$srcref["s3_example_func.list"]), "\n")
#> pkg : s3_example.R:20:25:22:1
cat("trace: ", format(traces_df$srcref[1L]), "\n")
#> trace: r6_example.R:63:7:63:24
Although still a little arcane, you can see that the package object code contains the coverage trace. The package code spans lines 19-21, whereas the coverage trace lies in line 20. With this information, we can couple each package object with the coverage traces contained within each.
head(join_on_containing_srcrefs(traces_df, pkg_ns_df))
#> name.x srcref.x name.y srcref.y
#> 1 r6_example.R:63:7:63:24:7:24:100:100 r6_example.R:63:7:63:24 Person r6_example.R:60:18:64:5
#> 2 r6_example.R:74:7:74:23:7:23:111:111 r6_example.R:74:7:74:23 Person r6_example.R:72:13:77:5
#> 3 r6_example.R:4:3:8:3:3:3:41:45 r6_example.R:4:3:8:3 adder r6_example.R:3:10:9:1
#> 4 r6_example.R:97:9:97:22:9:22:134:134 r6_example.R:97:9:97:22 Rando r6_example.R:95:12:102:3
#> 5 s3_example.R:16:3:16:11:3:11:259:259 s3_example.R:16:3:16:11 s3_example_func.default s3_example.R:15:28:17:1
#> 6 hypotenuse.R:8:3:8:25:3:25:35:35 hypotenuse.R:8:3:8:25 hypotenuse hypotenuse.R:7:15:9:1
#> namespace.y
#> 1 examplepkg
#> 2 examplepkg
#> 3 examplepkg
#> 4 examplepkg
#> 5 examplepkg
#> 6 examplepkg
As expected, we can see that this test trace (now with the
".x"
suffix) is mapped to the expected corresponding
package namespace object.
covr
tracesAlthough this relationship doesn’t require any fancy
srcref
joining, we can associate tests and traces by a
simple mapping of indices. FOr this, the
test_trace_mapping()
function is provided which will
reshape a covr
object (produced using
options(covr.record_tests = TRUE)
) to create a unified
table across all covr
traces:
head(test_trace_mapping(examplepkg_cov))
#> test depth i trace
#> [1,] 1 1 1 9
#> [2,] 2 37 1 18
#> [3,] 2 38 2 14
#> [4,] 2 39 3 23
#> [5,] 2 40 4 24
#> [6,] 2 40 5 26
The test
and trace
columns contain the row
indices in the respective test_srcrefs_df()
and
trace_srcrefs_df()
data.frame
s, allowing for
this data to be joined. However, since it is easy for a testing suite to
cause the evaluation of an enormous number of traces, this matrix can
become extremely long. It is recommended to do some aggregation or
subsetting of this matrix before trying to use it to join more data-rich
data.
You can also see that the evaluation order is stored
(i
), as well as the stack depth when it was evaluated
(depth
). With this added info, you might consider first
filtering for only the first trace evaluated by each test, or to count
all the times that a line of code was evaluated by each test by
aggregating rows.
On the other side of the process, we also need to associate package
objects with documentation. In many cases, this is trivial, and the name
of the exported object can be used directly to find documentation as you
have come to expect using ?<object>
. This holds for
simple functions. However, some objects are aliased to different
documentation files or are built at package build time into internal
representations, as is with S4
classes, and R6
classes.
To handle these cases, we can use the Rd_df()
function
to associate any available source code with a documentation file.
# filter for interesting columns for display
cols <- c("file", "alias", "doctype")
Rd_df(examplepkg_source_path)[, cols]
#> file alias doctype
#> 1 Accumulator.Rd Accumulator <NA>
#> 2 Person.Rd Person <NA>
#> 3 PersonPrime.Rd PersonPrime data
#> 4 Rando.Rd Rando <NA>
#> 5 S4Example-class.Rd S4Example-class class
#> 6 S4Example-class.Rd S4Example class
#> 7 S4Example2-class.Rd S4Example2-class class
#> 8 S4Example2-class.Rd S4Example2 class
#> 9 adder.Rd adder <NA>
#> 10 complex_call_stack.Rd complex_call_stack <NA>
#> 11 deeper_nested_function.Rd deeper_nested_function <NA>
#> 12 hypotenuse.Rd hypotenuse <NA>
#> 13 increment.Rd increment <NA>
#> 14 names-S4Example-method.Rd names,S4Example-method <NA>
#> 15 names-S4Example2-method.Rd names,S4Example2-method <NA>
#> 16 nested_function.Rd nested_function <NA>
#> 17 rd_data_sampler.Rd rd_data_sampler data
#> 18 rd_sampler.Rd rd_sampler <NA>
#> 19 recursive_function.Rd recursive_function <NA>
#> 20 reexport_example.Rd reexport_example <NA>
#> 21 reexports.Rd reexports import
#> 22 reexports.Rd help import
#> 23 s3_example_func.Rd s3_example_func <NA>
#> 24 s3_example_func.Rd s3_example_func.default <NA>
#> 25 s3_example_func.Rd s3_example_func.list <NA>
#> 26 show-S4Example-method.Rd show,S4Example-method <NA>
These aliases are also used when we use pkg_srcrefs_df()
and can be used to associate srcrefs
with .Rd
files.
pkg_srcrefs_df(examplepkg_ns)
#> name srcref namespace
#> 1 nested_function complex_call_stack.R:9:20:11:1 examplepkg
#> 2 adder r6_example.R:3:10:9:1 examplepkg
#> 3 recursive_function complex_call_stack.R:21:23:24:1 examplepkg
#> 4 Accumulator r6_example.R:29:16:32:3 examplepkg
#> 6 s3_example_func.list s3_example.R:20:25:22:1 examplepkg
#> 7 s3_example_func s3_example.R:10:20:12:1 examplepkg
#> 8 Person r6_example.R:60:18:64:5 examplepkg
#> 9 Person r6_example.R:72:13:77:5 examplepkg
#> 10 increment s4_example.R:58:35:60:1 examplepkg
#> 11 rd_sampler rd_sampler.R:55:15:57:1 examplepkg
#> 12 deeper_nested_function complex_call_stack.R:15:27:17:1 examplepkg
#> 13 hypotenuse hypotenuse.R:7:15:9:1 examplepkg
#> 14 Rando r6_example.R:95:12:102:3 examplepkg
#> 15 increment s4_example.R:53:25:55:1 examplepkg
#> 16 s3_example_func.default s3_example.R:15:28:17:1 examplepkg
#> 17 names,S4Example-method s4_example.R:17:44:19:1 examplepkg
#> 18 names,S4Example2-method s4_example.R:43:45:45:1 examplepkg
#> 19 show,S4Example-method s4_example.R:25:43:27:1 examplepkg
#> 20 complex_call_stack complex_call_stack.R:3:23:5:1 examplepkg
#> 21 PersonPrime <NA> <NA>
#> 22 help <NA> utils
#> 23 reexport_example <NA> utils
#> 24 S4Example2 <NA> examplepkg
#> 25 S4Example <NA> examplepkg
#> 26 person <NA> utils
#> 27 rd_data_sampler <NA> <NA>
You’ll see that we don’t have any srcref
s associated
with the "data"
and "class"
doctype
documentation because these objects do not themselves have source code,
even if there is source code in that was used to create them at bulid
time.
With these relationships, we can build some really deep understandings of exactly what code a test evaluates and tie that test together with the documented behaviors.