Title: | Analysis Results Data |
---|---|
Description: | Construct CDISC (Clinical Data Interchange Standards Consortium) compliant Analysis Results Data objects. These objects are used and re-used to construct summary tables, visualizations, and written reports. The package also exports utilities for working with these objects and creating new Analysis Results Data objects. |
Authors: | Daniel D. Sjoberg [aut, cre] , Becca Krouse [aut], Emily de la Rua [aut], F. Hoffmann-La Roche AG [cph, fnd], GlaxoSmithKline Research & Development Limited [cph] |
Maintainer: | Daniel D. Sjoberg <[email protected]> |
License: | Apache License 2.0 |
Version: | 0.3.0.9003 |
Built: | 2024-11-19 03:00:40 UTC |
Source: | https://github.com/insightsengineering/cards |
Data frame imported from the CDISC SDTM/ADaM Pilot Project
ADSL ADAE ADTTE
ADSL ADAE ADTTE
An object of class tbl_df
(inherits from tbl
, data.frame
) with 254 rows and 48 columns.
An object of class tbl_df
(inherits from tbl
, data.frame
) with 1191 rows and 55 columns.
An object of class tbl_df
(inherits from tbl
, data.frame
) with 254 rows and 26 columns.
Use this function to add a new statistic row that is a function of the other statistics in an ARD.
add_calculated_row( x, expr, stat_name, by = c(all_ard_groups(), all_ard_variables(), any_of("context")), stat_label = stat_name, fmt_fn = NULL )
add_calculated_row( x, expr, stat_name, by = c(all_ard_groups(), all_ard_variables(), any_of("context")), stat_label = stat_name, fmt_fn = NULL )
x |
( |
expr |
( |
stat_name |
( |
by |
( |
stat_label |
( |
fmt_fn |
( |
an ARD data frame of class 'card'
ard_continuous(mtcars, variables = mpg) |> add_calculated_row(expr = max - min, stat_name = "range") ard_continuous(mtcars, variables = mpg) |> add_calculated_row( expr = dplyr::case_when( mean > median ~ "Right Skew", mean < median ~ "Left Skew", .default = "Symmetric" ), stat_name = "skew" )
ard_continuous(mtcars, variables = mpg) |> add_calculated_row(expr = max - min, stat_name = "range") ard_continuous(mtcars, variables = mpg) |> add_calculated_row( expr = dplyr::case_when( mean > median ~ "Right Skew", mean < median ~ "Left Skew", .default = "Symmetric" ), stat_name = "skew" )
Accepted aliases are non-negative integers and strings.
The integers are converted to functions that round the statistics to the number of decimal places to match the integer.
The formatting strings come in the form "xx"
, "xx.x"
, "xx.x%"
, etc.
The number of x
s that appear after the decimal place indicate the number of
decimal places the statistics will be rounded to.
The number of x
s that appear before the decimal place indicate the leading
spaces that are added to the result.
If the string ends in "%"
, results are scaled by 100 before rounding.
alias_as_fmt_fn(x, variable, stat_name)
alias_as_fmt_fn(x, variable, stat_name)
x |
( |
variable |
( |
stat_name |
( |
a function
alias_as_fmt_fn(1) alias_as_fmt_fn("xx.x")
alias_as_fmt_fn(1) alias_as_fmt_fn("xx.x")
Apply the formatting functions to each of the raw statistics.
Function aliases are converted to functions using alias_as_fmt_fn()
.
apply_fmt_fn(x, replace = FALSE)
apply_fmt_fn(x, replace = FALSE)
x |
( |
replace |
(scalar |
an ARD data frame of class 'card'
ard_continuous(ADSL, variables = "AGE") |> apply_fmt_fn()
ard_continuous(ADSL, variables = "AGE") |> apply_fmt_fn()
Add variable attributes to an ARD data frame.
The label
attribute will be added for all columns, and when no label
is specified and no label has been set for a column using the label=
argument,
the column name will be placed in the label statistic.
The class
attribute will also be returned for all columns.
Any other attribute returned by attributes()
will also be added, e.g. factor levels.
ard_attributes(data, ...) ## S3 method for class 'data.frame' ard_attributes(data, variables = everything(), label = NULL, ...) ## Default S3 method: ard_attributes(data, ...)
ard_attributes(data, ...) ## S3 method for class 'data.frame' ard_attributes(data, variables = everything(), label = NULL, ...) ## Default S3 method: ard_attributes(data, ...)
data |
( |
... |
These dots are for future extensions and must be empty. |
variables |
( |
label |
(named |
an ARD data frame of class 'card'
df <- dplyr::tibble(var1 = letters, var2 = LETTERS) attr(df$var1, "label") <- "Lowercase Letters" ard_attributes(df, variables = everything())
df <- dplyr::tibble(var1 = letters, var2 = LETTERS) attr(df$var1, "label") <- "Lowercase Letters" ard_attributes(df, variables = everything())
Compute Analysis Results Data (ARD) for categorical summary statistics.
ard_categorical(data, ...) ## S3 method for class 'data.frame' ard_categorical( data, variables, by = dplyr::group_vars(data), strata = NULL, statistic = everything() ~ c("n", "p", "N"), denominator = NULL, fmt_fn = NULL, stat_label = everything() ~ default_stat_labels(), ... )
ard_categorical(data, ...) ## S3 method for class 'data.frame' ard_categorical( data, variables, by = dplyr::group_vars(data), strata = NULL, statistic = everything() ~ c("n", "p", "N"), denominator = NULL, fmt_fn = NULL, stat_label = everything() ~ default_stat_labels(), ... )
data |
( |
... |
Arguments passed to methods. |
variables |
( |
by , strata
|
(
Arguments may be used in conjunction with one another. |
statistic |
( |
denominator |
( |
fmt_fn |
( |
stat_label |
( |
an ARD data frame of class 'card'
By default, the ard_categorical()
function returns the statistics "n"
, "N"
, and
"p"
, where little "n"
are the counts for the variable levels, and big "N"
is
the number of non-missing observations. The default calculation for the
percentage is merely p = n/N
.
However, it is sometimes necessary to provide a different "N"
to use
as the denominator in this calculation. For example, in a calculation
of the rates of various observed adverse events, you may need to update the
denominator to the number of enrolled subjects.
In such cases, use the denominator
argument to specify a new definition
of "N"
, and subsequently "p"
.
The argument expects one of the following inputs:
a data frame. Any columns in the data frame that overlap with the by
/strata
columns will be used to calculate the new "N"
.
an integer. This single integer will be used as the new "N"
a string: one of "column"
, "row"
, or "cell"
. "column"
is equivalent
to denominator=NULL
. "row"
gives 'row' percentages where by
/strata
columns are the 'top' of a cross table, and the variables are the rows.
"cell"
gives percentages where the denominator is the number of non-missing
rows in the source data frame.
a structured data frame. The data frame will include columns from by
/strata
.
The last column must be named "...ard_N..."
. The integers in this column will
be used as the updated "N"
in the calculations.
In some cases, you may need other kinds of statistics for categorical variables.
Despite the name, ard_continuous()
can be used to obtain these statistics.
In the example below, we calculate the mode of a categorical variable.
get_mode <- function(x) { table(x) |> sort(decreasing = TRUE) |> names() |> getElement(1L) } ADSL |> ard_continuous( variables = AGEGR1, statistic = list(AGEGR1 = list(mode = get_mode)) ) #> {cards} data frame: 1 x 8 #> variable context stat_name stat_label stat fmt_fn #> 1 AGEGR1 continuo… mode mode 65-80 <fn> #> i 2 more variables: warning, error
ard_categorical(ADSL, by = "ARM", variables = "AGEGR1") ADSL |> dplyr::group_by(ARM) |> ard_categorical( variables = "AGEGR1", statistic = everything() ~ "n" )
ard_categorical(ADSL, by = "ARM", variables = "AGEGR1") ADSL |> dplyr::group_by(ARM) |> ard_categorical( variables = "AGEGR1", statistic = everything() ~ "n" )
Function is similar to ard_continuous()
, but allows for more complex
summaries. While ard_continuous(statistic)
only allows for a univariable
function, ard_complex(statistic)
can handle more complex data summaries.
ard_complex(data, ...) ## S3 method for class 'data.frame' ard_complex( data, variables, by = dplyr::group_vars(data), strata = NULL, statistic, fmt_fn = NULL, stat_label = everything() ~ default_stat_labels(), ... )
ard_complex(data, ...) ## S3 method for class 'data.frame' ard_complex( data, variables, by = dplyr::group_vars(data), strata = NULL, statistic, fmt_fn = NULL, stat_label = everything() ~ default_stat_labels(), ... )
data |
( |
... |
Arguments passed to methods. |
variables |
( |
by , strata
|
(
Arguments may be used in conjunction with one another. |
statistic |
(
|
fmt_fn |
( |
stat_label |
( |
an ARD data frame of class 'card'
# example how to mimic behavior of `ard_continuous()` ard_complex( ADSL, by = "ARM", variables = "AGE", statistic = list(AGE = list(mean = \(x, ...) mean(x))) ) # return the grand mean and the mean within the `by` group grand_mean <- function(data, full_data, variable, ...) { list( mean = mean(data[[variable]], na.rm = TRUE), grand_mean = mean(full_data[[variable]], na.rm = TRUE) ) } ADSL |> dplyr::group_by(ARM) |> ard_complex( variables = "AGE", statistic = list(AGE = list(means = grand_mean)) )
# example how to mimic behavior of `ard_continuous()` ard_complex( ADSL, by = "ARM", variables = "AGE", statistic = list(AGE = list(mean = \(x, ...) mean(x))) ) # return the grand mean and the mean within the `by` group grand_mean <- function(data, full_data, variable, ...) { list( mean = mean(data[[variable]], na.rm = TRUE), grand_mean = mean(full_data[[variable]], na.rm = TRUE) ) } ADSL |> dplyr::group_by(ARM) |> ard_complex( variables = "AGE", statistic = list(AGE = list(means = grand_mean)) )
Compute Analysis Results Data (ARD) for simple continuous summary statistics.
ard_continuous(data, ...) ## S3 method for class 'data.frame' ard_continuous( data, variables, by = dplyr::group_vars(data), strata = NULL, statistic = everything() ~ continuous_summary_fns(), fmt_fn = NULL, stat_label = everything() ~ default_stat_labels(), ... )
ard_continuous(data, ...) ## S3 method for class 'data.frame' ard_continuous( data, variables, by = dplyr::group_vars(data), strata = NULL, statistic = everything() ~ continuous_summary_fns(), fmt_fn = NULL, stat_label = everything() ~ default_stat_labels(), ... )
data |
( |
... |
Arguments passed to methods. |
variables |
( |
by , strata
|
(
Arguments may be used in conjunction with one another. |
statistic |
( The value assigned to each variable must also be a named list, where the names
are used to reference a function and the element is the function object.
Typically, this function will return a scalar statistic, but a function that
returns a named list of results is also acceptable, e.g.
|
fmt_fn |
( |
stat_label |
( |
an ARD data frame of class 'card'
ard_continuous(ADSL, by = "ARM", variables = "AGE") # if a single function returns a named list, the named # results will be placed in the resulting ARD ADSL |> dplyr::group_by(ARM) |> ard_continuous( variables = "AGE", statistic = ~ list(conf.int = \(x) t.test(x)[["conf.int"]] |> as.list() |> setNames(c("conf.low", "conf.high"))) )
ard_continuous(ADSL, by = "ARM", variables = "AGE") # if a single function returns a named list, the named # results will be placed in the resulting ARD ADSL |> dplyr::group_by(ARM) |> ard_continuous( variables = "AGE", statistic = ~ list(conf.int = \(x) t.test(x)[["conf.int"]] |> as.list() |> setNames(c("conf.low", "conf.high"))) )
Compute Analysis Results Data (ARD) for dichotomous summary statistics.
ard_dichotomous(data, ...) ## S3 method for class 'data.frame' ard_dichotomous( data, variables, by = dplyr::group_vars(data), strata = NULL, value = maximum_variable_value(data[variables]), statistic = everything() ~ c("n", "N", "p"), denominator = NULL, fmt_fn = NULL, stat_label = everything() ~ default_stat_labels(), ... )
ard_dichotomous(data, ...) ## S3 method for class 'data.frame' ard_dichotomous( data, variables, by = dplyr::group_vars(data), strata = NULL, value = maximum_variable_value(data[variables]), statistic = everything() ~ c("n", "N", "p"), denominator = NULL, fmt_fn = NULL, stat_label = everything() ~ default_stat_labels(), ... )
data |
( |
... |
Arguments passed to methods. |
variables |
( |
by , strata
|
(
Arguments may be used in conjunction with one another. |
value |
(named |
statistic |
( |
denominator |
( |
fmt_fn |
( |
stat_label |
( |
an ARD data frame of class 'card'
By default, the ard_categorical()
function returns the statistics "n"
, "N"
, and
"p"
, where little "n"
are the counts for the variable levels, and big "N"
is
the number of non-missing observations. The default calculation for the
percentage is merely p = n/N
.
However, it is sometimes necessary to provide a different "N"
to use
as the denominator in this calculation. For example, in a calculation
of the rates of various observed adverse events, you may need to update the
denominator to the number of enrolled subjects.
In such cases, use the denominator
argument to specify a new definition
of "N"
, and subsequently "p"
.
The argument expects one of the following inputs:
a data frame. Any columns in the data frame that overlap with the by
/strata
columns will be used to calculate the new "N"
.
an integer. This single integer will be used as the new "N"
a string: one of "column"
, "row"
, or "cell"
. "column"
is equivalent
to denominator=NULL
. "row"
gives 'row' percentages where by
/strata
columns are the 'top' of a cross table, and the variables are the rows.
"cell"
gives percentages where the denominator is the number of non-missing
rows in the source data frame.
a structured data frame. The data frame will include columns from by
/strata
.
The last column must be named "...ard_N..."
. The integers in this column will
be used as the updated "N"
in the calculations.
ard_dichotomous(mtcars, by = vs, variables = c(cyl, am), value = list(cyl = 4)) mtcars |> dplyr::group_by(vs) |> ard_dichotomous( variables = c(cyl, am), value = list(cyl = 4), statistic = ~"p" )
ard_dichotomous(mtcars, by = vs, variables = c(cyl, am), value = list(cyl = 4)) mtcars |> dplyr::group_by(vs) |> ard_dichotomous( variables = c(cyl, am), value = list(cyl = 4), statistic = ~"p" )
Performs hierarchical or nested tabulations, e.g. tabulates AE terms
nested within AE system organ class.
ard_hierarchical()
includes summaries for the last variable listed
in the variables
argument, nested within the other variables included.
ard_hierarchical_count()
includes summaries for all variables
listed in the variables
argument each summary nested within the preceding
variables, e.g. variables=c(AESOC, AEDECOD)
summarizes AEDECOD
nested
in AESOC
, and also summarizes the counts of AESOC
.
ard_hierarchical(data, ...) ard_hierarchical_count(data, ...) ## S3 method for class 'data.frame' ard_hierarchical( data, variables, by = dplyr::group_vars(data), statistic = everything() ~ c("n", "N", "p"), denominator = NULL, fmt_fn = NULL, stat_label = everything() ~ default_stat_labels(), id = NULL, ... ) ## S3 method for class 'data.frame' ard_hierarchical_count( data, variables, by = dplyr::group_vars(data), fmt_fn = NULL, stat_label = everything() ~ default_stat_labels(), ... )
ard_hierarchical(data, ...) ard_hierarchical_count(data, ...) ## S3 method for class 'data.frame' ard_hierarchical( data, variables, by = dplyr::group_vars(data), statistic = everything() ~ c("n", "N", "p"), denominator = NULL, fmt_fn = NULL, stat_label = everything() ~ default_stat_labels(), id = NULL, ... ) ## S3 method for class 'data.frame' ard_hierarchical_count( data, variables, by = dplyr::group_vars(data), fmt_fn = NULL, stat_label = everything() ~ default_stat_labels(), ... )
data |
( |
... |
Arguments passed to methods. |
variables |
( |
by |
( |
statistic |
( |
denominator |
( |
fmt_fn |
( |
stat_label |
( |
id |
( |
an ARD data frame of class 'card'
By default, the ard_categorical()
function returns the statistics "n"
, "N"
, and
"p"
, where little "n"
are the counts for the variable levels, and big "N"
is
the number of non-missing observations. The default calculation for the
percentage is merely p = n/N
.
However, it is sometimes necessary to provide a different "N"
to use
as the denominator in this calculation. For example, in a calculation
of the rates of various observed adverse events, you may need to update the
denominator to the number of enrolled subjects.
In such cases, use the denominator
argument to specify a new definition
of "N"
, and subsequently "p"
.
The argument expects one of the following inputs:
a data frame. Any columns in the data frame that overlap with the by
/strata
columns will be used to calculate the new "N"
.
an integer. This single integer will be used as the new "N"
a string: one of "column"
, "row"
, or "cell"
. "column"
is equivalent
to denominator=NULL
. "row"
gives 'row' percentages where by
/strata
columns are the 'top' of a cross table, and the variables are the rows.
"cell"
gives percentages where the denominator is the number of non-missing
rows in the source data frame.
a structured data frame. The data frame will include columns from by
/strata
.
The last column must be named "...ard_N..."
. The integers in this column will
be used as the updated "N"
in the calculations.
ard_hierarchical( data = ADAE |> dplyr::slice_tail(n = 1L, by = c(USUBJID, TRTA, AESOC, AEDECOD)), variables = c(AESOC, AEDECOD), by = TRTA, id = USUBJID, denominator = ADSL |> dplyr::rename(TRTA = ARM) ) ard_hierarchical_count( data = ADAE, variables = c(AESOC, AEDECOD), by = TRTA )
ard_hierarchical( data = ADAE |> dplyr::slice_tail(n = 1L, by = c(USUBJID, TRTA, AESOC, AEDECOD)), variables = c(AESOC, AEDECOD), by = TRTA, id = USUBJID, denominator = ADSL |> dplyr::rename(TRTA = ARM) ) ard_hierarchical_count( data = ADAE, variables = c(AESOC, AEDECOD), by = TRTA )
Compute Analysis Results Data (ARD) for statistics related to data missingness.
ard_missing(data, ...) ## S3 method for class 'data.frame' ard_missing( data, variables, by = dplyr::group_vars(data), statistic = everything() ~ c("N_obs", "N_miss", "N_nonmiss", "p_miss", "p_nonmiss"), fmt_fn = NULL, stat_label = everything() ~ default_stat_labels(), ... )
ard_missing(data, ...) ## S3 method for class 'data.frame' ard_missing( data, variables, by = dplyr::group_vars(data), statistic = everything() ~ c("N_obs", "N_miss", "N_nonmiss", "p_miss", "p_nonmiss"), fmt_fn = NULL, stat_label = everything() ~ default_stat_labels(), ... )
data |
( |
... |
Arguments passed to methods. |
variables |
( |
by |
( |
statistic |
( The value assigned to each variable must also be a named list, where the names
are used to reference a function and the element is the function object.
Typically, this function will return a scalar statistic, but a function that
returns a named list of results is also acceptable, e.g.
|
fmt_fn |
( |
stat_label |
( |
an ARD data frame of class 'card'
ard_missing(ADSL, by = "ARM", variables = "AGE") ADSL |> dplyr::group_by(ARM) |> ard_missing( variables = "AGE", statistic = ~"N_miss" )
ard_missing(ADSL, by = "ARM", variables = "AGE") ADSL |> dplyr::group_by(ARM) |> ard_missing( variables = "AGE", statistic = ~"N_miss" )
Stack multiple ARD calls sharing common input data
and by
variables.
Optionally incorporate additional information on represented variables, e.g.
overall calculations, rates of missingness, attributes, or transform results
with shuffle_ard()
.
If the ard_stack(by)
argument is specified, a univariate tabulation of the
by variable will also be returned.
ard_stack( data, ..., .by = NULL, .overall = FALSE, .missing = FALSE, .attributes = FALSE, .total_n = FALSE, .shuffle = FALSE )
ard_stack( data, ..., .by = NULL, .overall = FALSE, .missing = FALSE, .attributes = FALSE, .total_n = FALSE, .shuffle = FALSE )
data |
( |
... |
( |
.by |
( |
.overall |
( |
.missing |
( |
.attributes |
( |
.total_n |
( |
.shuffle |
( |
an ARD data frame of class 'card'
ard_stack( data = ADSL, ard_categorical(variables = "AGEGR1"), ard_continuous(variables = "AGE"), .by = "ARM", .overall = TRUE, .attributes = TRUE ) ard_stack( data = ADSL, ard_categorical(variables = "AGEGR1"), ard_continuous(variables = "AGE"), .by = "ARM", .shuffle = TRUE )
ard_stack( data = ADSL, ard_categorical(variables = "AGEGR1"), ard_continuous(variables = "AGE"), .by = "ARM", .overall = TRUE, .attributes = TRUE ) ard_stack( data = ADSL, ard_categorical(variables = "AGEGR1"), ard_continuous(variables = "AGE"), .by = "ARM", .shuffle = TRUE )
Use these functions to calculate multiple summaries of nested or hierarchical data
in a single call.
ard_stack_hierarchical()
: Calculates rates of events (e.g. adverse events)
utilizing the denominator
and id
arguments to identify the rows in data
to include in each rate calculation.
ard_stack_hierarchical_count()
: Calculates counts of events utilizing
all rows for each tabulation.
ard_stack_hierarchical( data, variables, by = dplyr::group_vars(data), id, denominator, include = everything(), statistic = everything() ~ c("n", "N", "p"), overall = FALSE, over_variables = FALSE, attributes = FALSE, total_n = FALSE, shuffle = FALSE ) ard_stack_hierarchical_count( data, variables, by = dplyr::group_vars(data), denominator = NULL, include = everything(), overall = FALSE, over_variables = FALSE, attributes = FALSE, total_n = FALSE, shuffle = FALSE )
ard_stack_hierarchical( data, variables, by = dplyr::group_vars(data), id, denominator, include = everything(), statistic = everything() ~ c("n", "N", "p"), overall = FALSE, over_variables = FALSE, attributes = FALSE, total_n = FALSE, shuffle = FALSE ) ard_stack_hierarchical_count( data, variables, by = dplyr::group_vars(data), denominator = NULL, include = everything(), overall = FALSE, over_variables = FALSE, attributes = FALSE, total_n = FALSE, shuffle = FALSE )
data |
( |
variables |
( |
by |
( |
id |
( |
denominator |
(
|
include |
( |
statistic |
( |
overall |
(scalar |
over_variables |
(scalar |
attributes |
(scalar |
total_n |
(scalar |
shuffle |
(scalar |
an ARD data frame of class 'card'
To calculate event rates, the ard_stack_hierarchical()
function identifies
rows to include in the calculation.
First, the primary data frame is sorted by the columns identified in
the id
, by
, and variables
arguments.
As the function cycles over the variables specified in the variables
argument,
the data frame is grouped by id
, intersect(by, names(denominator))
, and variables
utilizing the last row within each of the groups.
For example, if the call is
ard_stack_hierarchical(data = ADAE, variables = c(AESOC, AEDECOD), id = USUBJID)
,
then we'd first subset ADAE to be one row within the grouping c(USUBJID, AESOC, AEDECOD)
to calculate the event rates in 'AEDECOD'
. We'd then repeat and
subset ADAE to be one row within the grouping c(USUBJID, AESOC)
to calculate the event rates in 'AESOC'
.
When we set overall=TRUE
, we wish to re-run our calculations removing the
stratifying columns. For example, if we ran the code below, we results would
include results with the code chunk being re-run with by=NULL
.
ard_stack_hierarchical( data = ADAE, variables = c(AESOC, AEDECOD), by = TRTA, denominator = ADSL |> dplyr::rename(TRTA = ARM), overall = TRUE )
But there is another case to be aware of: when the by
argument includes
columns that are not present in the denominator
, for example when tabulating
results by AE grade or severity in addition to treatment assignment.
In the example below, we're tabulating results by treatment assignment and
AE severity. By specifying overall=TRUE
, we will re-run the to get
results with by = AESEV
and again with by = NULL
.
ard_stack_hierarchical( data = ADAE, variables = c(AESOC, AEDECOD), by = c(TRTA, AESEV), denominator = ADSL |> dplyr::rename(TRTA = ARM), overall = TRUE )
ard_stack_hierarchical( ADAE, variables = c(AESOC, AEDECOD), by = TRTA, denominator = ADSL |> dplyr::rename(TRTA = ARM), id = USUBJID ) ard_stack_hierarchical_count( ADAE, variables = c(AESOC, AEDECOD), by = TRTA, denominator = ADSL |> dplyr::rename(TRTA = ARM) )
ard_stack_hierarchical( ADAE, variables = c(AESOC, AEDECOD), by = TRTA, denominator = ADSL |> dplyr::rename(TRTA = ARM), id = USUBJID ) ard_stack_hierarchical_count( ADAE, variables = c(AESOC, AEDECOD), by = TRTA, denominator = ADSL |> dplyr::rename(TRTA = ARM) )
General function for calculating ARD results within subgroups.
While the examples below show use with other functions from the cards package, this function would primarily be used with the statistical functions in the cardx functions.
ard_strata(.data, .by = NULL, .strata = NULL, .f, ...)
ard_strata(.data, .by = NULL, .strata = NULL, .f, ...)
.data |
( |
.by , .strata
|
(
These argument should not include any columns that appear in the |
.f |
( |
... |
Additional arguments passed on to the |
an ARD data frame of class 'card'
ard_strata( ADSL, by = ARM, .f = ~ ard_continuous(.x, variables = AGE) )
ard_strata( ADSL, by = ARM, .f = ~ ard_continuous(.x, variables = AGE) )
Returns the total N for the data frame.
The placeholder variable name returned in the object is "..ard_total_n.."
ard_total_n(data, ...) ## S3 method for class 'data.frame' ard_total_n(data, ...)
ard_total_n(data, ...) ## S3 method for class 'data.frame' ard_total_n(data, ...)
data |
( |
... |
Arguments passed to methods. |
an ARD data frame of class 'card'
ard_total_n(ADSL)
ard_total_n(ADSL)
Convert data frames to ARDs of class 'card'.
as_card(x)
as_card(x)
x |
( |
an ARD data frame of class 'card'
data.frame( stat_name = c("N", "mean"), stat_label = c("N", "Mean"), stat = c(10, 0.5) ) |> as_card()
data.frame( stat_name = c("N", "mean"), stat_label = c("N", "Mean"), stat = c(10, 0.5) ) |> as_card()
as_nested_list(x)
as_nested_list(x)
x |
( |
a nested list
ard_continuous(mtcars, by = "cyl", variables = c("mpg", "hp")) |> as_nested_list()
ard_continuous(mtcars, by = "cyl", variables = c("mpg", "hp")) |> as_nested_list()
Wrapper for dplyr::bind_rows()
with additional checks
for duplicated statistics.
bind_ard( ..., .distinct = TRUE, .update = FALSE, .order = FALSE, .quiet = FALSE )
bind_ard( ..., .distinct = TRUE, .update = FALSE, .order = FALSE, .quiet = FALSE )
... |
( |
.distinct |
( |
.update |
( |
.order |
( |
.quiet |
( |
an ARD data frame of class 'card'
ard <- ard_categorical(ADSL, by = "ARM", variables = "AGEGR1") bind_ard(ard, ard, .update = TRUE)
ard <- ard_categorical(ADSL, by = "ARM", variables = "AGEGR1") bind_ard(ard, ard, .update = TRUE)
Function tests the structure and returns notes when object does not conform to expected structure.
check_ard_structure(x, column_order = TRUE, method = TRUE)
check_ard_structure(x, column_order = TRUE, method = TRUE)
x |
( |
column_order |
(scalar |
method |
(scalar |
an ARD data frame of class 'card' (invisible)
ard_continuous(ADSL, variables = "AGE") |> dplyr::select(-warning, -error) |> check_ard_structure()
ard_continuous(ADSL, variables = "AGE") |> dplyr::select(-warning, -error) |> check_ard_structure()
Returns a named list of statistics labels
default_stat_labels()
default_stat_labels()
named list
# stat labels default_stat_labels()
# stat labels default_stat_labels()
Evaluates an expression while also capturing error and warning conditions.
Function always returns a named list list(result=, warning=, error=)
.
If there are no errors or warnings, those elements will be NULL
.
If there is an error, the result element will be NULL
.
Messages are neither saved nor printed to the console.
Evaluation is done via rlang::eval_tidy()
. If errors and warnings are produced
using the {cli}
package, the messages are processed with cli::ansi_strip()
to remove styling from the message.
captured_condition_as_message()
/captured_condition_as_error()
These functions take the result from eval_capture_conditions()
and return
errors or warnings as either messages (via cli::cli_inform()
) or
errors (via cli::cli_abort()
). These functions handle cases where the
condition messages may include curly brackets, which would typically cause
issues when processed with the cli::cli_*()
functions.
Functions return the "result"
from eval_capture_conditions()
.
eval_capture_conditions(expr, data = NULL, env = caller_env()) captured_condition_as_message( x, message = c("The following {type} occured:", x = "{condition}"), type = c("error", "warning"), envir = rlang::current_env() ) captured_condition_as_error( x, message = c("The following {type} occured:", x = "{condition}"), type = c("error", "warning"), call = get_cli_abort_call(), envir = rlang::current_env() )
eval_capture_conditions(expr, data = NULL, env = caller_env()) captured_condition_as_message( x, message = c("The following {type} occured:", x = "{condition}"), type = c("error", "warning"), envir = rlang::current_env() ) captured_condition_as_error( x, message = c("The following {type} occured:", x = "{condition}"), type = c("error", "warning"), call = get_cli_abort_call(), envir = rlang::current_env() )
expr |
An expression or quosure to evaluate. |
data |
A data frame, or named list or vector. Alternatively, a
data mask created with |
env |
The environment in which to evaluate |
x |
( |
message |
( |
type |
( |
envir |
Environment to evaluate the glue expressions in. |
call |
( |
a named list
# function executes without error or warning eval_capture_conditions(letters[1:2]) # an error is thrown res <- eval_capture_conditions(stop("Example Error!")) res captured_condition_as_message(res) # if more than one warning is returned, all are saved eval_capture_conditions({ warning("Warning 1") warning("Warning 2") letters[1:2] }) # messages are not printed to the console eval_capture_conditions({ message("A message!") letters[1:2] })
# function executes without error or warning eval_capture_conditions(letters[1:2]) # an error is thrown res <- eval_capture_conditions(stop("Example Error!")) res captured_condition_as_message(res) # if more than one warning is returned, all are saved eval_capture_conditions({ warning("Warning 1") warning("Warning 2") letters[1:2] }) # messages are not printed to the console eval_capture_conditions({ message("A message!") letters[1:2] })
Returns the statistics from an ARD as a named list.
get_ard_statistics(x, ..., .column = "stat", .attributes = NULL)
get_ard_statistics(x, ..., .column = "stat", .attributes = NULL)
x |
( |
... |
( |
.column |
( |
.attributes |
( |
named list
ard <- ard_categorical(ADSL, by = "ARM", variables = "AGEGR1") get_ard_statistics( ard, group1_level %in% "Placebo", variable_level %in% "65-80", .attributes = "stat_label" )
ard <- ard_categorical(ADSL, by = "ARM", variables = "AGEGR1") get_ard_statistics( ard, group1_level %in% "Placebo", variable_level %in% "65-80", .attributes = "stat_label" )
Returns a function with the requested rounding and scaling schema.
label_cards(digits = 1, scale = 1, width = NULL)
label_cards(digits = 1, scale = 1, width = NULL)
digits |
( |
scale |
( |
width |
( |
a function
label_cards(2)(pi) label_cards(1, scale = 100)(pi) label_cards(2, width = 5)(pi)
label_cards(2)(pi) label_cards(1, scale = 100)(pi) label_cards(2, width = 5)(pi)
For each column in the passed data frame, the function returns a named list
with the value being the largest/last element after a sort.
For factors, the last level is returned, and for logical vectors TRUE
is returned.
This is used as the default value in ard_dichotomous(value)
if not specified by
the user.
maximum_variable_value(data)
maximum_variable_value(data)
data |
( |
a named list
ADSL[c("AGEGR1", "BMIBLGR1")] |> maximum_variable_value()
ADSL[c("AGEGR1", "BMIBLGR1")] |> maximum_variable_value()
Create empty ARDs used to create mock tables or table shells.
Where applicable, the formatting functions are set to return 'xx'
or 'xx.x'
.
mock_categorical( variables, statistic = everything() ~ c("n", "p", "N"), by = NULL ) mock_continuous( variables, statistic = everything() ~ c("N", "mean", "sd", "median", "p25", "p75", "min", "max"), by = NULL ) mock_dichotomous( variables, statistic = everything() ~ c("n", "p", "N"), by = NULL ) mock_missing( variables, statistic = everything() ~ c("N_obs", "N_miss", "N_nonmiss", "p_miss", "p_nonmiss"), by = NULL ) mock_attributes(label) mock_total_n()
mock_categorical( variables, statistic = everything() ~ c("n", "p", "N"), by = NULL ) mock_continuous( variables, statistic = everything() ~ c("N", "mean", "sd", "median", "p25", "p75", "min", "max"), by = NULL ) mock_dichotomous( variables, statistic = everything() ~ c("n", "p", "N"), by = NULL ) mock_missing( variables, statistic = everything() ~ c("N_obs", "N_miss", "N_nonmiss", "p_miss", "p_nonmiss"), by = NULL ) mock_attributes(label) mock_total_n()
variables |
( a named list for functions |
statistic |
( |
by |
(named |
label |
(named |
an ARD data frame of class 'card'
mock_categorical( variables = list( AGEGR1 = factor(c("<65", "65-80", ">80"), levels = c("<65", "65-80", ">80")) ), by = list(TRTA = c("Placebo", "Xanomeline High Dose", "Xanomeline Low Dose")) ) |> apply_fmt_fn() mock_continuous( variables = c("AGE", "BMIBL"), by = list(TRTA = c("Placebo", "Xanomeline High Dose", "Xanomeline Low Dose")) ) |> # update the mock to report 'xx.xx' for standard deviations update_ard_fmt_fn(variables = c("AGE", "BMIBL"), stat_names = "sd", fmt_fn = \(x) "xx.xx") |> apply_fmt_fn()
mock_categorical( variables = list( AGEGR1 = factor(c("<65", "65-80", ">80"), levels = c("<65", "65-80", ">80")) ), by = list(TRTA = c("Placebo", "Xanomeline High Dose", "Xanomeline Low Dose")) ) |> apply_fmt_fn() mock_continuous( variables = c("AGE", "BMIBL"), by = list(TRTA = c("Placebo", "Xanomeline High Dose", "Xanomeline Low Dose")) ) |> # update the mock to report 'xx.xx' for standard deviations update_ard_fmt_fn(variables = c("AGE", "BMIBL"), stat_names = "sd", fmt_fn = \(x) "xx.xx") |> apply_fmt_fn()
This function is similar to tidyr::nest()
, except that it retains
rows for unobserved combinations (and unobserved factor levels) of by
variables, and unobserved combinations of stratifying variables.
The levels are wrapped in lists so they can be stacked with other types of different classes.
nest_for_ard( data, by = NULL, strata = NULL, key = "data", rename_columns = TRUE, list_columns = TRUE, include_data = TRUE )
nest_for_ard( data, by = NULL, strata = NULL, key = "data", rename_columns = TRUE, list_columns = TRUE, include_data = TRUE )
data |
( |
by , strata
|
(
Arguments may be used in conjunction with one another. |
key |
( |
rename_columns |
( |
list_columns |
( |
include_data |
(scalar |
a nested tibble
nest_for_ard( data = ADAE |> dplyr::left_join(ADSL[c("USUBJID", "ARM")], by = "USUBJID") |> dplyr::filter(AOCCSFL %in% "Y"), by = "ARM", strata = "AESOC" )
nest_for_ard( data = ADAE |> dplyr::left_join(ADSL[c("USUBJID", "ARM")], by = "USUBJID") |> dplyr::filter(AOCCSFL %in% "Y"), by = "ARM", strata = "AESOC" )
Function parses the errors and warnings observed while calculating the statistics requested in the ARD and prints them to the console as messages.
print_ard_conditions(x)
print_ard_conditions(x)
x |
( |
returns invisible if check is successful, throws all condition messages if not.
# passing a character variable for numeric summary ard_continuous(ADSL, variables = AGEGR1) |> print_ard_conditions()
# passing a character variable for numeric summary ard_continuous(ADSL, variables = AGEGR1) |> print_ard_conditions()
Print method for objects of class 'card'
## S3 method for class 'card' print(x, n = NULL, columns = c("auto", "all"), n_col = 6L, ...)
## S3 method for class 'card' print(x, n = NULL, columns = c("auto", "all"), n_col = 6L, ...)
x |
( |
n |
( |
columns |
( |
n_col |
( |
... |
( |
an ARD data frame of class 'card' (invisibly)
ard_categorical(ADSL, variables = AGEGR1) |> print()
ard_categorical(ADSL, variables = AGEGR1) |> print()
Functions process tidyselect arguments passed to functions in the cards package. The processed values are saved to the calling environment, by default.
process_selectors()
: the arguments will be processed with tidyselect and
converted to a vector of character column names.
process_formula_selectors()
: for arguments that expect named lists or
lists of formulas (where the LHS of the formula is a tidyselector). This
function processes these inputs and returns a named list. If a name is
repeated, the last entry is kept.
fill_formula_selectors()
: when users override the default argument values,
it can be important to ensure that each column from a data frame is assigned
a value. This function checks that each column in data
has an assigned
value, and if not, fills the value in with the default value passed here.
compute_formula_selector()
: used in process_formula_selectors()
to
evaluate a single argument.
check_list_elements()
: used to check the class/type/values of the list
elements, primarily those processed with process_formula_selectors()
.
cards_select()
: wraps tidyselect::eval_select() |> names()
, and returns
better contextual messaging when errors occur.
process_selectors(data, ...) process_formula_selectors(data, ...) fill_formula_selectors(data, ...) ## S3 method for class 'data.frame' process_selectors(data, ..., env = caller_env()) ## S3 method for class 'data.frame' process_formula_selectors( data, ..., env = caller_env(), include_env = FALSE, allow_empty = TRUE ) ## S3 method for class 'data.frame' fill_formula_selectors(data, ..., env = caller_env()) compute_formula_selector( data, x, arg_name = caller_arg(x), env = caller_env(), strict = TRUE, include_env = FALSE, allow_empty = TRUE ) check_list_elements( x, predicate, error_msg = NULL, arg_name = rlang::caller_arg(x) ) cards_select(expr, data, ..., arg_name = NULL)
process_selectors(data, ...) process_formula_selectors(data, ...) fill_formula_selectors(data, ...) ## S3 method for class 'data.frame' process_selectors(data, ..., env = caller_env()) ## S3 method for class 'data.frame' process_formula_selectors( data, ..., env = caller_env(), include_env = FALSE, allow_empty = TRUE ) ## S3 method for class 'data.frame' fill_formula_selectors(data, ..., env = caller_env()) compute_formula_selector( data, x, arg_name = caller_arg(x), env = caller_env(), strict = TRUE, include_env = FALSE, allow_empty = TRUE ) check_list_elements( x, predicate, error_msg = NULL, arg_name = rlang::caller_arg(x) ) cards_select(expr, data, ..., arg_name = NULL)
data |
( |
... |
(
|
env |
( |
include_env |
( |
allow_empty |
( |
x |
|
arg_name |
( |
strict |
( |
predicate |
( |
error_msg |
( |
expr |
( |
process_selectors()
, fill_formula_selectors()
, process_formula_selectors()
and check_list_elements()
return NULL. compute_formula_selector()
returns a
named list.
example_env <- rlang::new_environment() process_selectors(ADSL, variables = starts_with("TRT"), env = example_env) get(x = "variables", envir = example_env) fill_formula_selectors(ADSL, env = example_env) process_formula_selectors( ADSL, statistic = list(starts_with("TRT") ~ mean, TRTSDT = min), env = example_env ) get(x = "statistic", envir = example_env) check_list_elements( get(x = "statistic", envir = example_env), predicate = function(x) !is.null(x), error_msg = c( "Error in the argument {.arg {arg_name}} for variable {.val {variable}}.", "i" = "Value must be a named list of functions." ) ) # process one list compute_formula_selector(ADSL, x = starts_with("U") ~ 1L)
example_env <- rlang::new_environment() process_selectors(ADSL, variables = starts_with("TRT"), env = example_env) get(x = "variables", envir = example_env) fill_formula_selectors(ADSL, env = example_env) process_formula_selectors( ADSL, statistic = list(starts_with("TRT") ~ mean, TRTSDT = min), env = example_env ) get(x = "statistic", envir = example_env) check_list_elements( get(x = "statistic", envir = example_env), predicate = function(x) !is.null(x), error_msg = c( "Error in the argument {.arg {arg_name}} for variable {.val {variable}}.", "i" = "Value must be a named list of functions." ) ) # process one list compute_formula_selector(ADSL, x = starts_with("U") ~ 1L)
This function combines a pair of group
/group_level
or variable
/variable_level
columns into a
single column. The group_level
or variable_level
column is renamed according to the value of
the group
or variable
column, respectively.
rename_ard_columns( x, columns = c(all_ard_groups(), all_ard_variables()), unlist = NULL )
rename_ard_columns( x, columns = c(all_ard_groups(), all_ard_variables()), unlist = NULL )
x |
( |
columns |
( |
unlist |
( |
data frame
ADSL |> ard_categorical(by = ARM, variables = AGEGR1) |> apply_fmt_fn() |> rename_ard_columns(unlist = c(stat, stat_fmt))
ADSL |> ard_categorical(by = ARM, variables = AGEGR1) |> apply_fmt_fn() |> rename_ard_columns(unlist = c(stat, stat_fmt))
When a statistical summary function errors, the "stat"
column will be
NULL
. It is, however, sometimes useful to replace these values with a
non-NULL
value, e.g. NA
.
replace_null_statistic(x, value = NA, rows = TRUE)
replace_null_statistic(x, value = NA, rows = TRUE)
x |
( |
value |
(usually a |
rows |
( |
an ARD data frame of class 'card'
# the quantile functions error because the input is character, while the median function returns NA data.frame(x = rep_len(NA_character_, 10)) |> ard_continuous( variables = x, statistic = ~ continuous_summary_fns(c("median", "p25", "p75")) ) |> replace_null_statistic(rows = !is.null(error))
# the quantile functions error because the input is character, while the median function returns NA data.frame(x = rep_len(NA_character_, 10)) |> ard_continuous( variables = x, statistic = ~ continuous_summary_fns(c("median", "p25", "p75")) ) |> replace_null_statistic(rows = !is.null(error))
Rounds the values in its first argument to the specified number of
decimal places (default 0). Importantly, round5()
does not use Base R's
"round to even" default. Standard rounding methods are implemented, for example,
round5(0.5) = 1
.
round5(x, digits = 0)
round5(x, digits = 0)
x |
( |
digits |
( |
Function inspired by janitor::round_half_up()
.
a numeric vector
x <- 0:4 / 2 round5(x) |> setNames(x) # compare results to Base R round(x) |> setNames(x)
x <- 0:4 / 2 round5(x) |> setNames(x) # compare results to Base R round(x) |> setNames(x)
These selection helpers match variables according to a given pattern.
all_ard_groups()
: Function selects grouping columns, e.g. columns
named "group##"
or "group##_level"
.
all_ard_variables()
: Function selects variables columns, e.g. columns
named "variable"
or "variable_level"
.
all_ard_group_n()
: Function selects n
grouping columns.
all_missing_columns()
: Function selects columns that are all NA
or empty.
all_ard_groups(types = c("names", "levels")) all_ard_variables(types = c("names", "levels")) all_ard_group_n(n) all_missing_columns()
all_ard_groups(types = c("names", "levels")) all_ard_variables(types = c("names", "levels")) all_ard_group_n(n) all_missing_columns()
types |
( |
n |
( |
tidyselect output
ard <- ard_categorical(ADSL, by = "ARM", variables = "AGEGR1") ard |> dplyr::select(all_ard_groups()) ard |> dplyr::select(all_ard_variables())
ard <- ard_categorical(ADSL, by = "ARM", variables = "AGEGR1") ard |> dplyr::select(all_ard_groups()) ard |> dplyr::select(all_ard_variables())
This function ingests an ARD object and shuffles the information to prepare for analysis. Helpful for streamlining across multiple ARDs. Combines each group/group_level into 1 column, back fills missing grouping values from the variable levels where possible, and optionally trims statistics-level metadata.
shuffle_ard(x, trim = TRUE)
shuffle_ard(x, trim = TRUE)
x |
( |
trim |
( |
a tibble
bind_ard( ard_categorical(ADSL, by = "ARM", variables = "AGEGR1"), ard_categorical(ADSL, variables = "ARM") ) |> shuffle_ard()
bind_ard( ard_categorical(ADSL, by = "ARM", variables = "AGEGR1"), ard_categorical(ADSL, variables = "ARM") ) |> shuffle_ard()
continuous_summary_fns()
returns a named list of summary functions
for continuous variables. Some functions include slight modifications to
their base equivalents. For example, the min()
and max()
functions
return NA
instead of Inf
when an empty vector is passed.
Statistics "p25"
and "p75"
are calculated with quantile(type = 2)
,
which matches
SAS's default value.
continuous_summary_fns( summaries = c("N", "mean", "sd", "median", "p25", "p75", "min", "max"), other_stats = NULL )
continuous_summary_fns( summaries = c("N", "mean", "sd", "median", "p25", "p75", "min", "max"), other_stats = NULL )
summaries |
( |
other_stats |
(named |
named list of summary statistics
# continuous variable summaries ard_continuous( ADSL, variables = "AGE", statistic = ~ continuous_summary_fns(c("N", "median")) )
# continuous variable summaries ard_continuous( ADSL, variables = "AGE", statistic = ~ continuous_summary_fns(c("N", "median")) )
ARD functions for relocating columns and rows to the standard order.
tidy_ard_column_order()
relocates columns of the ARD to the standard order.
tidy_ard_row_order()
orders rows of ARD according to variables, groups, and
strata, while retaining the order of the input ARD.
tidy_ard_column_order(x) tidy_ard_row_order(x)
tidy_ard_column_order(x) tidy_ard_row_order(x)
x |
( |
an ARD data frame of class 'card'
# order columns ard <- dplyr::bind_rows( ard_continuous(mtcars, variables = "mpg"), ard_continuous(mtcars, variables = "mpg", by = "cyl") ) tidy_ard_column_order(ard) |> tidy_ard_row_order()
# order columns ard <- dplyr::bind_rows( ard_continuous(mtcars, variables = "mpg"), ard_continuous(mtcars, variables = "mpg", by = "cyl") ) tidy_ard_column_order(ard) |> tidy_ard_row_order()
Function converts a model's one-row tidy data frame into an ARD structure.
The tidied data frame must have been constructed with
eval_capture_conditions()
.
This function is primarily for developers and few consistency checks have been included.
tidy_as_ard( lst_tidy, tidy_result_names, fun_args_to_record = character(0L), formals = list(), passed_args = list(), lst_ard_columns )
tidy_as_ard( lst_tidy, tidy_result_names, fun_args_to_record = character(0L), formals = list(), passed_args = list(), lst_ard_columns )
lst_tidy |
(named |
tidy_result_names |
( |
fun_args_to_record |
( |
formals |
( |
passed_args |
(named |
lst_ard_columns |
(named |
an ARD data frame of class 'card'
# example how one may create a fisher.test() ARD function my_ard_fishertest <- function(data, by, variable, ...) { # perform fisher test and format results ----------------------------------- lst_tidy_fisher <- eval_capture_conditions( # this manipulation is similar to `fisher.test(...) |> broom::tidy()` stats::fisher.test(x = data[[variable]], y = data[[by]], ...)[c("p.value", "method")] |> as.data.frame() ) # build ARD ------------------------------------------------------------------ tidy_as_ard( lst_tidy = lst_tidy_fisher, tidy_result_names = c("p.value", "method"), fun_args_to_record = c( "workspace", "hybrid", "hybridPars", "control", "or", "conf.int", "conf.level", "simulate.p.value", "B" ), formals = formals(stats::fisher.test), passed_args = dots_list(...), lst_ard_columns = list(group1 = by, variable = variable, context = "fishertest") ) } my_ard_fishertest(mtcars, by = "am", variable = "vs")
# example how one may create a fisher.test() ARD function my_ard_fishertest <- function(data, by, variable, ...) { # perform fisher test and format results ----------------------------------- lst_tidy_fisher <- eval_capture_conditions( # this manipulation is similar to `fisher.test(...) |> broom::tidy()` stats::fisher.test(x = data[[variable]], y = data[[by]], ...)[c("p.value", "method")] |> as.data.frame() ) # build ARD ------------------------------------------------------------------ tidy_as_ard( lst_tidy = lst_tidy_fisher, tidy_result_names = c("p.value", "method"), fun_args_to_record = c( "workspace", "hybrid", "hybridPars", "control", "or", "conf.int", "conf.level", "simulate.p.value", "B" ), formals = formals(stats::fisher.test), passed_args = dots_list(...), lst_ard_columns = list(group1 = by, variable = variable, context = "fishertest") ) } my_ard_fishertest(mtcars, by = "am", variable = "vs")
Functions used to update ARD formatting functions and statistic labels.
This is a helper function to streamline the update process. If it does not exactly meet your needs, recall that an ARD is just a data frame and it can be modified directly.
update_ard_fmt_fn( x, variables = everything(), stat_names, fmt_fn, filter = TRUE ) update_ard_stat_label( x, variables = everything(), stat_names, stat_label, filter = TRUE )
update_ard_fmt_fn( x, variables = everything(), stat_names, fmt_fn, filter = TRUE ) update_ard_stat_label( x, variables = everything(), stat_names, stat_label, filter = TRUE )
x |
( |
variables |
( |
stat_names |
( |
fmt_fn |
( |
filter |
( |
stat_label |
( |
an ARD data frame of class 'card'
ard_continuous(ADSL, variables = AGE) |> update_ard_fmt_fn(stat_names = c("mean", "sd"), fmt_fn = 8L) |> update_ard_stat_label(stat_names = c("mean", "sd"), stat_label = "Mean (SD)") |> apply_fmt_fn() # same as above, but only apply update to the Placebo level ard_continuous( ADSL, by = ARM, variables = AGE, statistic = ~ continuous_summary_fns(c("N", "mean")) ) |> update_ard_fmt_fn(stat_names = "mean", fmt_fn = 8L, filter = group1_level == "Placebo") |> apply_fmt_fn()
ard_continuous(ADSL, variables = AGE) |> update_ard_fmt_fn(stat_names = c("mean", "sd"), fmt_fn = 8L) |> update_ard_stat_label(stat_names = c("mean", "sd"), stat_label = "Mean (SD)") |> apply_fmt_fn() # same as above, but only apply update to the Placebo level ard_continuous( ADSL, by = ARM, variables = AGE, statistic = ~ continuous_summary_fns(c("N", "mean")) ) |> update_ard_fmt_fn(stat_names = "mean", fmt_fn = 8L, filter = group1_level == "Placebo") |> apply_fmt_fn()