Title: | Vaccine Extension Package for ADaM in 'R' Asset Library |
---|---|
Description: | Programming vaccine specific Clinical Data Interchange Standards Consortium (CDISC) compliant Analysis Data Model (ADaM) datasets in 'R'. Flat model is followed as per Center for Biologics Evaluation and Research (CBER) guidelines for creating vaccine specific domains. ADaM datasets are a mandatory part of any New Drug or Biologics License Application submitted to the United States Food and Drug Administration (FDA). Analysis derivations are implemented in accordance with the "Analysis Data Model Implementation Guide" (CDISC Analysis Data Model Team (2021), <https://www.cdisc.org/standards/foundational/adam/adamig-v1-3-release-package>). The package is an extension package of the 'admiral' package. |
Authors: | Sukalpo Saha [aut, cre], Arjun Rubalingam [aut], Ben Straub [aut], Vikram S [aut], Dhivya Kanagaraj [aut], Federico Baratin [aut], Yamini Purna Bollu [aut], Ilse Augustyns [aut], Kalyani Bodicherla [aut], Hilde Delanghe [aut], Lee Armishaw [aut], Neetu Sangari [ctb], Abdul Khayat [ctb], Ankur Jindal [ctb], Jayashree V [ctb], Jagadish Katam [ctb], Andrea Pammolli [ctb], Daniele Bottigliengo [ctb], Ranya Ben Hsain [ctb], Marleen Nijs [ctb], Mandy Peng [ctb], Tina Zhai [ctb], Ross Farrugia [ctb], Stefan Bundfuss [ctb], Edoardo Mancini [ctb], Pfizer Inc. [cph, fnd], GlaxoSmithKline LLC [cph, fnd], Johnson & Johnson [cph, fnd] |
Maintainer: | Sukalpo Saha <[email protected]> |
License: | Apache License (>= 2) |
Version: | 0.3.0 |
Built: | 2024-12-25 04:28:10 UTC |
Source: | https://github.com/pharmaverse/admiralvaccine |
An example Clinical Events analysis dataset
admiralvaccine_adce
admiralvaccine_adce
An object of class tbl_df
(inherits from tbl
, data.frame
) with 44 rows and 56 columns.
(https://github.com/pharmaverse/admiralvaccine/blob/main/inst/templates/ad_adce.R)
Other dataset:
admiralvaccine_adface
,
admiralvaccine_adis
,
admiralvaccine_adsl
An example Findings About Clinical Events analysis dataset
admiralvaccine_adface
admiralvaccine_adface
An object of class tbl_df
(inherits from tbl
, data.frame
) with 371 rows and 60 columns.
(https://github.com/pharmaverse/admiralvaccine/blob/main/inst/templates/ad_adface.R)
Other dataset:
admiralvaccine_adce
,
admiralvaccine_adis
,
admiralvaccine_adsl
An example Immunogenicity Specimen Assessments analysis dataset
admiralvaccine_adis
admiralvaccine_adis
An object of class tbl_df
(inherits from tbl
, data.frame
) with 64 rows and 102 columns.
(https://github.com/pharmaverse/admiralvaccine/blob/main/inst/templates/ad_adis.R)
Other dataset:
admiralvaccine_adce
,
admiralvaccine_adface
,
admiralvaccine_adsl
An example Subject Level analysis dataset
admiralvaccine_adsl
admiralvaccine_adsl
An object of class tbl_df
(inherits from tbl
, data.frame
) with 2 rows and 46 columns.
(https://github.com/pharmaverse/admiralvaccine/blob/main/inst/templates/ad_adsl.R)
Other dataset:
admiralvaccine_adce
,
admiralvaccine_adface
,
admiralvaccine_adis
To derive the severity records from the diameter records.
derive_diam_to_sev_records( dataset, filter_add = NULL, diam_code = "DIAMETER", faobj_values = c("REDNESS", "SWELLING"), testcd_sev = "SEV", test_sev = "Severity/Intensity", none = 0, mild = 2, mod = 5, sev = 10 )
derive_diam_to_sev_records( dataset, filter_add = NULL, diam_code = "DIAMETER", faobj_values = c("REDNESS", "SWELLING"), testcd_sev = "SEV", test_sev = "Severity/Intensity", none = 0, mild = 2, mod = 5, sev = 10 )
dataset |
Input data set The variables |
filter_add |
filter for the |
diam_code |
Diameter record filter Permitted Value: A character vector or scalar. Helps to filter the diameter records to derive the severity records by
passing the |
faobj_values |
Event filter Permitted Value: A character vector or Scalar. Helps to filter the events ( |
testcd_sev |
To assign Permitted Value: A character scalar Assign the value for |
test_sev |
Permitted Value: A Character scalar Assign the value for |
none |
Pass the lower limit for grade Permitted Value: A numeric vector The Assign the lower limit to derive the Severity Grade ( Note: Use the limit reference to pass the values to these arguments |
mild |
Pass the lower limit for grade Permitted Value: A numeric vector |
mod |
Pass the lower limit for grade Permitted Value: A numeric vector |
sev |
Pass the lower limit for grade Permitted Value: A numeric vector |
The Input data with the new severity records for Redness and swelling which
is specified in faobj_values
and AVAL, AVALC will be derived and FATESTCD
,
FATEST
will be changed as per the values.
Basically, This function will derive and create the severity records from the
diameter record for the particular events specified in the faobj_values
that user wants.
If you want to derive the Severity from diameter, even though you have the severity in SDTM data.
This function will re-derive the severity and remove the derived SDTM severity records.
Arjun Rubalingam
Other der_rec:
derive_fever_records()
library(dplyr) library(admiral) library(tibble) input <- tribble( ~USUBJID, ~FAOBJ, ~AVAL, ~AVALC, ~ATPTREF, ~FATEST, ~FATESTCD, "XYZ1001", "REDNESS", 7.5, "7.5", "VACCINATION 1", "Diameter", "DIAMETER", "XYZ1001", "REDNESS", 3.5, "3.5", "VACCINATION 1", "Diameter", "DIAMETER", "XYZ1001", "REDNESS", 2, "2", "VACCINATION 1", "Diameter", "DIAMETER", "XYZ1001", "REDNESS", 1.8, "1.8", "VACCINATION 1", "Diameter", "DIAMETER", "XYZ1001", "REDNESS", 1.4, "1.4", "VACCINATION 1", "Diameter", "DIAMETER", "XYZ1002", "REDNESS", 11.1, "11.1", "VACCINATION 2", "Diameter", "DIAMETER", "XYZ1002", "REDNESS", 7.4, "7.4", "VACCINATION 2", "Diameter", "DIAMETER", "XYZ1002", "REDNESS", 6, "6", "VACCINATION 2", "Diameter", "DIAMETER", "XYZ1002", "REDNESS", 2.1, "2.1", "VACCINATION 2", "Diameter", "DIAMETER", "XYZ1002", "REDNESS", 1.1, "1.1", "VACCINATION 2", "Diameter", "DIAMETER", "XYZ1001", "SWELLING", 5.5, "5.5", "VACCINATION 1", "Diameter", "DIAMETER", "XYZ1001", "SWELLING", 2.5, "2.5", "VACCINATION 1", "Diameter", "DIAMETER", "XYZ1001", "SWELLING", 2, "2", "VACCINATION 1", "Diameter", "DIAMETER", "XYZ1001", "SWELLING", 1.8, "1.8", "VACCINATION 1", "Diameter", "DIAMETER", "XYZ1001", "SWELLING", 1.4, "1.4", "VACCINATION 1", "Diameter", "DIAMETER", "XYZ1002", "SWELLING", 10.1, "10.1", "VACCINATION 2", "Diameter", "DIAMETER", "XYZ1002", "SWELLING", 7.1, "7.1", "VACCINATION 2", "Diameter", "DIAMETER", "XYZ1002", "SWELLING", 5, "5", "VACCINATION 2", "Diameter", "DIAMETER", "XYZ1002", "SWELLING", 1.8, "1.8", "VACCINATION 2", "Diameter", "DIAMETER", "XYZ1002", "SWELLING", 1.4, "1.4", "VACCINATION 2", "Diameter", "DIAMETER" ) derive_diam_to_sev_records( dataset = input, faobj_values = c("REDNESS", "SWELLING"), diam_code = "DIAMETER", testcd_sev = "SEV", test_sev = "Severity" )
library(dplyr) library(admiral) library(tibble) input <- tribble( ~USUBJID, ~FAOBJ, ~AVAL, ~AVALC, ~ATPTREF, ~FATEST, ~FATESTCD, "XYZ1001", "REDNESS", 7.5, "7.5", "VACCINATION 1", "Diameter", "DIAMETER", "XYZ1001", "REDNESS", 3.5, "3.5", "VACCINATION 1", "Diameter", "DIAMETER", "XYZ1001", "REDNESS", 2, "2", "VACCINATION 1", "Diameter", "DIAMETER", "XYZ1001", "REDNESS", 1.8, "1.8", "VACCINATION 1", "Diameter", "DIAMETER", "XYZ1001", "REDNESS", 1.4, "1.4", "VACCINATION 1", "Diameter", "DIAMETER", "XYZ1002", "REDNESS", 11.1, "11.1", "VACCINATION 2", "Diameter", "DIAMETER", "XYZ1002", "REDNESS", 7.4, "7.4", "VACCINATION 2", "Diameter", "DIAMETER", "XYZ1002", "REDNESS", 6, "6", "VACCINATION 2", "Diameter", "DIAMETER", "XYZ1002", "REDNESS", 2.1, "2.1", "VACCINATION 2", "Diameter", "DIAMETER", "XYZ1002", "REDNESS", 1.1, "1.1", "VACCINATION 2", "Diameter", "DIAMETER", "XYZ1001", "SWELLING", 5.5, "5.5", "VACCINATION 1", "Diameter", "DIAMETER", "XYZ1001", "SWELLING", 2.5, "2.5", "VACCINATION 1", "Diameter", "DIAMETER", "XYZ1001", "SWELLING", 2, "2", "VACCINATION 1", "Diameter", "DIAMETER", "XYZ1001", "SWELLING", 1.8, "1.8", "VACCINATION 1", "Diameter", "DIAMETER", "XYZ1001", "SWELLING", 1.4, "1.4", "VACCINATION 1", "Diameter", "DIAMETER", "XYZ1002", "SWELLING", 10.1, "10.1", "VACCINATION 2", "Diameter", "DIAMETER", "XYZ1002", "SWELLING", 7.1, "7.1", "VACCINATION 2", "Diameter", "DIAMETER", "XYZ1002", "SWELLING", 5, "5", "VACCINATION 2", "Diameter", "DIAMETER", "XYZ1002", "SWELLING", 1.8, "1.8", "VACCINATION 2", "Diameter", "DIAMETER", "XYZ1002", "SWELLING", 1.4, "1.4", "VACCINATION 2", "Diameter", "DIAMETER" ) derive_diam_to_sev_records( dataset = input, faobj_values = c("REDNESS", "SWELLING"), diam_code = "DIAMETER", testcd_sev = "SEV", test_sev = "Severity" )
Creating Fever records from the VS
SDTM dataset.
derive_fever_records(dataset, dataset_source, filter_source, faobj)
derive_fever_records(dataset, dataset_source, filter_source, faobj)
dataset |
Input Dataset
Input dataset is expected to have variables |
dataset_source |
Source Dataset - SDTM Vital Sign ( |
filter_source |
Filter condition for Source dataset. |
faobj |
FAOBJ Value for fever records in output dataset. |
Check if FAOBJ = FEVER
record is present in input dataset,
if not then use SDTM.VS
to get FEVER records.
With temperature values from VSSTRESN
we decide if FEVER has
occurred or not (FAORRES = "Y"/"N"
).
Since records are derived, these FEVER records are considered DTYPE = "DERIVED"
if FAOBJ = FEVER
record is present, then input dataset will be made as output with no further
analysis.
The temperature value greater or equal 38° C will be considered as FEVER records.
The output dataset contains records with FATESTCD = "OCCUR"
for
FAOBJ = FEVER
records.
Dhivya Kanagaraj
Other der_rec:
derive_diam_to_sev_records()
library(tibble) library(dplyr) library(admiraldev) library(admiral) input <- tribble( ~USUBJID, ~FAOBJ, ~FATESTCD, ~FACAT, ~FASCAT, ~FATPT, "ABC101", "REDNESS", "SEV", "REACTOGENICITY", "ADMINISTRATIVE SITE", "DAY 1", "ABC101", "REDNESS", "DIAM", "REACTOGENICITY", "ADMINISTRATIVE SITE", "DAY 2", "ABC101", "VOMITTING", "SEV", "REACTOGENICITY", "SYSTEMIC", "DAY 1", "ABC101", "FATIQUE", "OCCUR", "REACTOGENICITY", "SYSTEMIC", "DAY 3" ) vs <- tribble( ~USUBJID, ~VSTESTCD, ~VSCAT, ~VSSTRESN, ~VSSTRESU, ~VSTPT, "ABC101", "TEMP", "REACTOGENICITY", 38.3, "C", "DAY 1", "ABC101", "TEMP", "REACTOGENICITY", 38, "C", "DAY 2", "ABC101", "TEMP", "REACTOGENICITY", 36, "C", "DAY 3", "ABC101", "TEMP", "REACTOGENICITY", 37, "C", "DAY 4", "ABC101", "TEMP", "REACTOGENICITY", 39, "C", "DAY 5", "ABC101", "TEMP", "REACTOGENICITY", 39, "C", "DAY 6", "ABC101", "TEMP", "REACTOGENICITY", 38, "C", "DAY 7" ) derive_fever_records( dataset = input, dataset_source = vs, filter_source = VSCAT == "REACTOGENICITY" & VSTESTCD == "TEMP", faobj = "FEVER" )
library(tibble) library(dplyr) library(admiraldev) library(admiral) input <- tribble( ~USUBJID, ~FAOBJ, ~FATESTCD, ~FACAT, ~FASCAT, ~FATPT, "ABC101", "REDNESS", "SEV", "REACTOGENICITY", "ADMINISTRATIVE SITE", "DAY 1", "ABC101", "REDNESS", "DIAM", "REACTOGENICITY", "ADMINISTRATIVE SITE", "DAY 2", "ABC101", "VOMITTING", "SEV", "REACTOGENICITY", "SYSTEMIC", "DAY 1", "ABC101", "FATIQUE", "OCCUR", "REACTOGENICITY", "SYSTEMIC", "DAY 3" ) vs <- tribble( ~USUBJID, ~VSTESTCD, ~VSCAT, ~VSSTRESN, ~VSSTRESU, ~VSTPT, "ABC101", "TEMP", "REACTOGENICITY", 38.3, "C", "DAY 1", "ABC101", "TEMP", "REACTOGENICITY", 38, "C", "DAY 2", "ABC101", "TEMP", "REACTOGENICITY", 36, "C", "DAY 3", "ABC101", "TEMP", "REACTOGENICITY", 37, "C", "DAY 4", "ABC101", "TEMP", "REACTOGENICITY", 39, "C", "DAY 5", "ABC101", "TEMP", "REACTOGENICITY", 39, "C", "DAY 6", "ABC101", "TEMP", "REACTOGENICITY", 38, "C", "DAY 7" ) derive_fever_records( dataset = input, dataset_source = vs, filter_source = VSCAT == "REACTOGENICITY" & VSTESTCD == "TEMP", faobj = "FEVER" )
Derive AVAL
variable for Laboratory Immunology Data ADaM domain.
A common rule has been decided for its derivation, based on ISLLOQ
, ISULOQ
and ISORRES
when both ISLLOQ
and ISULOQ
are present.
If ISULOQ
is not present, the variables used are ISLLOQ
and ISORRES
.
Please, refers to arguments description for additional details.
derive_var_aval_adis( dataset, lower_rule, middle_rule, upper_rule = NULL, round = NULL )
derive_var_aval_adis( dataset, lower_rule, middle_rule, upper_rule = NULL, round = NULL )
dataset |
Input dataset. |
lower_rule |
Derivation rule when |
middle_rule |
Derivation rule when |
upper_rule |
Derivation rule when |
round |
Rounding for |
Dataset with AVAL
variable derived.
Federico Baratin
Other der_var:
derive_vars_crit()
,
derive_vars_event_flag()
,
derive_vars_max_flag()
,
derive_vars_merged_vaccine()
,
derive_vars_params()
,
derive_vars_vaxdt()
library(tibble) library(admiral) library(admiraldev) library(dplyr) library(rlang) input <- tribble( ~USUBJID, ~AVISITN, ~PARAMCD, ~PARAM, ~ISORRES, ~ISSTRESN, ~ISLLOQ, ~ISULOQ, "ABC-1001", 10, "J0033VN", "J0033VN Antibody", NA, NA, 2, 100, "ABC-1001", 10, "I0019NT", "I0019NT Antibody", "3", 3.0, 4, 200, "ABC-1001", 10, "M0019LN", "M0019LN Antibody", ">150", NA, 8, 150, "ABC-1001", 10, "R0003MA", "R0003MA Antibody", "140.5", 140.5, 4, 120, "ABC-1001", 30, "J0033VN", "J0033VN Antibody", "2", 2.0, 2, 100, "ABC-1001", 30, "I0019NT", "I0019NT Antibody", NA, NA, 4, 200, "ABC-1001", 30, "M0019LN", "M0019LN Antibody", NA, NA, 8, 150, "ABC-1001", 30, "R0003MA", "R0003MA Antibody", "98.2", 98.2, 4, 120, "ABC-1001", 10, "J0033VNL", "LOG10 (J0033VN Antibody)", NA, NA, 2, 100, "ABC-1001", 10, "I0019NTL", "LOG10 (I0019NT Antibody)", "3", 3.0, 4, 200, "ABC-1001", 10, "M0019LNL", "LOG10 (M0019LN Antibody)", ">150", NA, 8, 150, "ABC-1001", 10, "R0003MAL", "LOG10 (R0003MA Antibody)", "140.5", 140.5, 4, 120, "ABC-1001", 30, "J0033VNL", "LOG10 (J0033VN Antibody)", "2", 2.0, 2, 100, "ABC-1001", 30, "I0019NTL", "LOG10 (I0019NT Antibody)", NA, NA, 4, 200, "ABC-1001", 30, "M0019LNL", "LOG10 (M0019LN Antibody)", NA, NA, 8, 150, "ABC-1001", 30, "R0003MAL", "LOG10 (R0003MA Antibody)", "98.2", 98.2, 4, 120, "ABC-1002", 10, "J0033VN", "J0033VN Antibody", "3", 3.0, 2, 100, "ABC-1002", 10, "I0019NT", "I0019NT Antibody", NA, NA, 4, 200, "ABC-1002", 10, "M0019LN", "M0019LN Antibody", NA, NA, 8, 150, "ABC-1002", 10, "R0003MA", "R0003MA Antibody", "48.9", 48.9, 4, 120, "ABC-1002", 30, "J0033VN", "J0033VN Antibody", NA, NA, 2, 100, "ABC-1002", 30, "I0019NT", "I0019NT Antibody", NA, NA, 4, 200, "ABC-1002", 30, "M0019LN", "M0019LN Antibody", "5", 5.0, 8, 150, "ABC-1002", 30, "R0003MA", "R0003MA Antibody", "228.1", 228.1, 4, 120 ) derive_var_aval_adis( dataset = input, lower_rule = ISLLOQ / 2, middle_rule = ISSTRESN, upper_rule = ISULOQ, round = 2 )
library(tibble) library(admiral) library(admiraldev) library(dplyr) library(rlang) input <- tribble( ~USUBJID, ~AVISITN, ~PARAMCD, ~PARAM, ~ISORRES, ~ISSTRESN, ~ISLLOQ, ~ISULOQ, "ABC-1001", 10, "J0033VN", "J0033VN Antibody", NA, NA, 2, 100, "ABC-1001", 10, "I0019NT", "I0019NT Antibody", "3", 3.0, 4, 200, "ABC-1001", 10, "M0019LN", "M0019LN Antibody", ">150", NA, 8, 150, "ABC-1001", 10, "R0003MA", "R0003MA Antibody", "140.5", 140.5, 4, 120, "ABC-1001", 30, "J0033VN", "J0033VN Antibody", "2", 2.0, 2, 100, "ABC-1001", 30, "I0019NT", "I0019NT Antibody", NA, NA, 4, 200, "ABC-1001", 30, "M0019LN", "M0019LN Antibody", NA, NA, 8, 150, "ABC-1001", 30, "R0003MA", "R0003MA Antibody", "98.2", 98.2, 4, 120, "ABC-1001", 10, "J0033VNL", "LOG10 (J0033VN Antibody)", NA, NA, 2, 100, "ABC-1001", 10, "I0019NTL", "LOG10 (I0019NT Antibody)", "3", 3.0, 4, 200, "ABC-1001", 10, "M0019LNL", "LOG10 (M0019LN Antibody)", ">150", NA, 8, 150, "ABC-1001", 10, "R0003MAL", "LOG10 (R0003MA Antibody)", "140.5", 140.5, 4, 120, "ABC-1001", 30, "J0033VNL", "LOG10 (J0033VN Antibody)", "2", 2.0, 2, 100, "ABC-1001", 30, "I0019NTL", "LOG10 (I0019NT Antibody)", NA, NA, 4, 200, "ABC-1001", 30, "M0019LNL", "LOG10 (M0019LN Antibody)", NA, NA, 8, 150, "ABC-1001", 30, "R0003MAL", "LOG10 (R0003MA Antibody)", "98.2", 98.2, 4, 120, "ABC-1002", 10, "J0033VN", "J0033VN Antibody", "3", 3.0, 2, 100, "ABC-1002", 10, "I0019NT", "I0019NT Antibody", NA, NA, 4, 200, "ABC-1002", 10, "M0019LN", "M0019LN Antibody", NA, NA, 8, 150, "ABC-1002", 10, "R0003MA", "R0003MA Antibody", "48.9", 48.9, 4, 120, "ABC-1002", 30, "J0033VN", "J0033VN Antibody", NA, NA, 2, 100, "ABC-1002", 30, "I0019NT", "I0019NT Antibody", NA, NA, 4, 200, "ABC-1002", 30, "M0019LN", "M0019LN Antibody", "5", 5.0, 8, 150, "ABC-1002", 30, "R0003MA", "R0003MA Antibody", "228.1", 228.1, 4, 120 ) derive_var_aval_adis( dataset = input, lower_rule = ISLLOQ / 2, middle_rule = ISSTRESN, upper_rule = ISULOQ, round = 2 )
Derive analysis criterion evaluation result variable, paired with character
and numeric flags.
This function allows also the derivation of a CRIT like variable with a
different name (ex: ANL01FL
), without generating additional numeric (ex: ANL01FN
)
and character label (ex: ANL01
) variables.
derive_vars_crit(dataset, prefix, crit_label, condition, criterion)
derive_vars_crit(dataset, prefix, crit_label, condition, criterion)
dataset |
Input dataset |
prefix |
Variables to add The analysis criterion evaluation variable's name (i.e., |
crit_label |
Criterion value A text description defining the condition necessary to satisfy the presence of the criterion |
condition |
Condition for selecting a subset The condition specified in order to select a subset from the input dataset in which the rule is applied. |
criterion |
Criterion rule The criterion that each selected row satisfies or not.
Returns |
Dataset with criterion variables
Federico Baratin
Other der_var:
derive_var_aval_adis()
,
derive_vars_event_flag()
,
derive_vars_max_flag()
,
derive_vars_merged_vaccine()
,
derive_vars_params()
,
derive_vars_vaxdt()
library(tibble) library(admiral) library(admiraldev) library(dplyr) input <- tribble( ~USUBJID, ~AVISITN, ~ISCAT, ~PARAMCD, ~AVAL, ~ISLLOQ, "999999-000001", 10, "IMMUNOLOGY", "J0033VN", 2, 4, "999999-000001", 10, "IMMUNOLOGY", "I0019NT", 3, 6, "999999-000001", 10, "IMMUNOLOGY", "M0019LN", 4, 4, "999999-000001", 10, "IMMUNOLOGY", "R0003MA", 3, 6, "999999-000001", 30, "IMMUNOLOGY", "J0033VN", 60, 4, "999999-000001", 30, "IMMUNOLOGY", "I0019NT", 567, 6, "999999-000001", 30, "IMMUNOLOGY", "M0019LN", 659, 4, "999999-000001", 30, "IMMUNOLOGY", "R0003MA", 250, 6, "999999-000002", 10, "IMMUNOLOGY", "J0033VN", 2, 4, "999999-000002", 10, "IMMUNOLOGY", "I0019NT", 7, 6, "999999-000002", 10, "IMMUNOLOGY", "M0019LN", 5, 4, "999999-000002", 10, "IMMUNOLOGY", "R0003MA", 3, 6, "999999-000002", 30, "IMMUNOLOGY", "J0033VN", 55, 4, "999999-000002", 30, "IMMUNOLOGY", "I0019NT", 89, 6, "999999-000002", 30, "IMMUNOLOGY", "M0019LN", 990, 4, "999999-000002", 30, "IMMUNOLOGY", "R0003MA", 340, 6, "999999-000003", 10, "IMMUNOLOGY", "J0033VN", 3, 4, "999999-000003", 10, "IMMUNOLOGY", "I0019NT", 6, 6, "999999-000003", 10, "IMMUNOLOGY", "M0019LN", 2, 4, "999999-000003", 10, "IMMUNOLOGY", "R0003MA", 2, 6, "999999-000003", 30, "IMMUNOLOGY", "J0033VN", 45, 4, "999999-000003", 30, "IMMUNOLOGY", "I0019NT", 381, 6, "999999-000003", 30, "IMMUNOLOGY", "M0019LN", 542, 4, "999999-000003", 30, "IMMUNOLOGY", "R0003MA", NA, 6 ) derive_vars_crit( dataset = input, prefix = "CRIT1", crit_label = "Titer >= ISLLOQ", condition = !is.na(AVAL) & !is.na(ISLLOQ), criterion = AVAL >= ISLLOQ )
library(tibble) library(admiral) library(admiraldev) library(dplyr) input <- tribble( ~USUBJID, ~AVISITN, ~ISCAT, ~PARAMCD, ~AVAL, ~ISLLOQ, "999999-000001", 10, "IMMUNOLOGY", "J0033VN", 2, 4, "999999-000001", 10, "IMMUNOLOGY", "I0019NT", 3, 6, "999999-000001", 10, "IMMUNOLOGY", "M0019LN", 4, 4, "999999-000001", 10, "IMMUNOLOGY", "R0003MA", 3, 6, "999999-000001", 30, "IMMUNOLOGY", "J0033VN", 60, 4, "999999-000001", 30, "IMMUNOLOGY", "I0019NT", 567, 6, "999999-000001", 30, "IMMUNOLOGY", "M0019LN", 659, 4, "999999-000001", 30, "IMMUNOLOGY", "R0003MA", 250, 6, "999999-000002", 10, "IMMUNOLOGY", "J0033VN", 2, 4, "999999-000002", 10, "IMMUNOLOGY", "I0019NT", 7, 6, "999999-000002", 10, "IMMUNOLOGY", "M0019LN", 5, 4, "999999-000002", 10, "IMMUNOLOGY", "R0003MA", 3, 6, "999999-000002", 30, "IMMUNOLOGY", "J0033VN", 55, 4, "999999-000002", 30, "IMMUNOLOGY", "I0019NT", 89, 6, "999999-000002", 30, "IMMUNOLOGY", "M0019LN", 990, 4, "999999-000002", 30, "IMMUNOLOGY", "R0003MA", 340, 6, "999999-000003", 10, "IMMUNOLOGY", "J0033VN", 3, 4, "999999-000003", 10, "IMMUNOLOGY", "I0019NT", 6, 6, "999999-000003", 10, "IMMUNOLOGY", "M0019LN", 2, 4, "999999-000003", 10, "IMMUNOLOGY", "R0003MA", 2, 6, "999999-000003", 30, "IMMUNOLOGY", "J0033VN", 45, 4, "999999-000003", 30, "IMMUNOLOGY", "I0019NT", 381, 6, "999999-000003", 30, "IMMUNOLOGY", "M0019LN", 542, 4, "999999-000003", 30, "IMMUNOLOGY", "R0003MA", NA, 6 ) derive_vars_crit( dataset = input, prefix = "CRIT1", crit_label = "Titer >= ISLLOQ", condition = !is.na(AVAL) & !is.na(ISLLOQ), criterion = AVAL >= ISLLOQ )
Creates two flag variables for the event occurred, one for the event occurred within each by group and one to flag if the event occurred or not for each day.
derive_vars_event_flag( dataset, by_vars, aval_cutoff, new_var1 = NULL, new_var2 = NULL )
derive_vars_event_flag( dataset, by_vars, aval_cutoff, new_var1 = NULL, new_var2 = NULL )
dataset |
Input dataset The variables specified by the |
by_vars |
Grouping variables The variables to be considered for grouping for creating a new
variable |
aval_cutoff |
Cutoff value for For |
new_var1 |
Name of the new flag variable 1 A new flag variable will be created with values `Y` or `N`. If the event is occurred at least once during a observation period for a subject then the new variable will be flagged as `Y` otherwise `N`. |
new_var2 |
Name of the new flag variable 2. A new flag variable will be created with values `Y` or `N`. If the event is occurred on the particular day then the new variable will be flagged as `Y` otherwise `N`. |
The event is considered to have occurred if AVAL
is greater than the aval_cutoff
or AVALC
has values Y
, MILD
, MODERATE
, SEVERE
. In all other cases, the
event is not considered to have occurred.
The names for the new flag variables created will be sponsor specific.
For the new_var1
it will flag all observations as "Y" within the by group
if the event occurred at least once during observation period. If the event
is not at all occurred during the observation period then all the
observations within by group will be flagged as "N".
For derived maximum records in FATESTCD
, the new_var2
will be
set to NA
.
If both new_var1
and new_var2
are NULL
, this function will return the
input dataset as output dataset.
The dataset with the flag variables added to it.
Other der_var:
derive_var_aval_adis()
,
derive_vars_crit()
,
derive_vars_max_flag()
,
derive_vars_merged_vaccine()
,
derive_vars_params()
,
derive_vars_vaxdt()
library(tibble) library(admiral) library(dplyr) input <- tribble( ~USUBJID, ~FAOBJ, ~ATPTREF, ~AVAL, ~AVALC, ~FATEST, ~FATESTCD, ~FASCAT, "1", "REDNESS", "VAC1", 3.5, "3.5", "Diameter", "DIAMETER", "ADMIN-SITE", "1", "REDNESS", "VAC1", 4.5, "4.5", "Diameter", "DIAMETER", "ADMIN-SITE", "1", "REDNESS", "VAC1", 1.5, "1.5", "Diameter", "DIAMETER", "ADMIN-SITE", "1", "REDNESS", "VAC1", 4.5, "4.5", "Diameter", "DIAMETER", "ADMIN-SITE", "1", "FATIGUE", "VAC1", 1, "MILD", "Severity", "SEV", "SYSTEMIC", "1", "FATIGUE", "VAC1", 2, "MODERATE", "Severity", "SEV", "SYSTEMIC", "1", "FATIGUE", "VAC1", 0, "NONE", "Severity", "SEV", "SYSTEMIC", "1", "FATIGUE", "VAC1", 2, "MODERATE", "Severity", "SEV", "SYSTEMIC", "1", "REDNESS", "VAC2", 6.5, "6.5", "Diameter", "DIAMETER", "ADMIN-SITE", "1", "REDNESS", "VAC2", 7.5, "7.5", "Diameter", "DIAMETER", "ADMIN-SITE", "1", "REDNESS", "VAC2", 2.5, "2.5", "Diameter", "DIAMETER", "ADMIN-SITE", "1", "REDNESS", "VAC2", 7.5, "7.5", "Diameter", "DIAMETER", "ADMIN-SITE", "1", "FATIGUE", "VAC2", 1, "MILD", "Severity", "SEV", "SYSTEMIC", "1", "FATIGUE", "VAC2", 2, "MODERATE", "Severity", "SEV", "SYSTEMIC", "1", "FATIGUE", "VAC2", 0, "NONE", "Severity", "SEV", "SYSTEMIC", "1", "FATIGUE", "VAC2", 2, "MODERATE", "Severity", "SEV", "SYSTEMIC", ) derive_vars_event_flag( dataset = input, by_vars = exprs(USUBJID, FAOBJ, ATPTREF), aval_cutoff = 2.5, new_var1 = EVENTL, new_var2 = EVENTDL )
library(tibble) library(admiral) library(dplyr) input <- tribble( ~USUBJID, ~FAOBJ, ~ATPTREF, ~AVAL, ~AVALC, ~FATEST, ~FATESTCD, ~FASCAT, "1", "REDNESS", "VAC1", 3.5, "3.5", "Diameter", "DIAMETER", "ADMIN-SITE", "1", "REDNESS", "VAC1", 4.5, "4.5", "Diameter", "DIAMETER", "ADMIN-SITE", "1", "REDNESS", "VAC1", 1.5, "1.5", "Diameter", "DIAMETER", "ADMIN-SITE", "1", "REDNESS", "VAC1", 4.5, "4.5", "Diameter", "DIAMETER", "ADMIN-SITE", "1", "FATIGUE", "VAC1", 1, "MILD", "Severity", "SEV", "SYSTEMIC", "1", "FATIGUE", "VAC1", 2, "MODERATE", "Severity", "SEV", "SYSTEMIC", "1", "FATIGUE", "VAC1", 0, "NONE", "Severity", "SEV", "SYSTEMIC", "1", "FATIGUE", "VAC1", 2, "MODERATE", "Severity", "SEV", "SYSTEMIC", "1", "REDNESS", "VAC2", 6.5, "6.5", "Diameter", "DIAMETER", "ADMIN-SITE", "1", "REDNESS", "VAC2", 7.5, "7.5", "Diameter", "DIAMETER", "ADMIN-SITE", "1", "REDNESS", "VAC2", 2.5, "2.5", "Diameter", "DIAMETER", "ADMIN-SITE", "1", "REDNESS", "VAC2", 7.5, "7.5", "Diameter", "DIAMETER", "ADMIN-SITE", "1", "FATIGUE", "VAC2", 1, "MILD", "Severity", "SEV", "SYSTEMIC", "1", "FATIGUE", "VAC2", 2, "MODERATE", "Severity", "SEV", "SYSTEMIC", "1", "FATIGUE", "VAC2", 0, "NONE", "Severity", "SEV", "SYSTEMIC", "1", "FATIGUE", "VAC2", 2, "MODERATE", "Severity", "SEV", "SYSTEMIC", ) derive_vars_event_flag( dataset = input, by_vars = exprs(USUBJID, FAOBJ, ATPTREF), aval_cutoff = 2.5, new_var1 = EVENTL, new_var2 = EVENTDL )
Adds Flags variables for maximum record per subject per event for overall and per vaccination
derive_vars_max_flag(dataset, flag1 = "ANL01FL", flag2 = "ANL02FL")
derive_vars_max_flag(dataset, flag1 = "ANL01FL", flag2 = "ANL02FL")
dataset |
Input dataset |
flag1 |
Flags the maximum record per subject per event per vaccination. Permitted value: Any variable name as a string or NULL.
|
flag2 |
Flags the maximum record per subject per event for Overall Permitted value: Any variable name as a string or NULL.
|
This utility flags the maximum record per subject per event
per vaccination/Overall
If both parameters flag1
& flag2
are passed as NULL
then
utility will throw error and flags will not be created.
The output dataframe with ANLxxFL
flags
Dhivya Kanagaraj
Other der_var:
derive_var_aval_adis()
,
derive_vars_crit()
,
derive_vars_event_flag()
,
derive_vars_merged_vaccine()
,
derive_vars_params()
,
derive_vars_vaxdt()
library(dplyr) library(admiraldev) library(admiral) library(tibble) input <- tribble( ~USUBJID, ~FAOBJ, ~FATESTCD, ~FATPTREF, ~AVAL, ~FATPT, ~PARAMCD, "ABC101", "REDNESS", "DIAMETER", "VACC 1", 10, "DAY 1", "DIARE", "ABC101", "REDNESS", "DIAMETER", "VACC 1", 7, "DAY 2", "DIARE", "ABC101", "REDNESS", "DIAMETER", "VACC 2", 3, "DAY 1", "DIARE", "ABC101", "REDNESS", "DIAMETER", "VACC 2", 8, "DAY 2", "DIARE", "ABC101", "FATIQUE", "SEV", "VACC 1", 1, "DAY 1", "SEVFAT", "ABC101", "FATIQUE", "SEV", "VACC 1", 1, "DAY 2", "SEVFAT", "ABC101", "FATIQUE", "SEV", "VACC 2", 2, "DAY 1", "SEVFAT", "ABC101", "FATIQUE", "SEV", "VACC 2", 3, "DAY 2", "SEVFAT" ) derive_vars_max_flag( dataset = input, flag1 = "ANL01FL", flag2 = "ANL02FL" ) derive_vars_max_flag( dataset = input, flag1 = NULL, flag2 = "ANL02FL" ) derive_vars_max_flag( dataset = input, flag1 = "ANL01FL", flag2 = NULL )
library(dplyr) library(admiraldev) library(admiral) library(tibble) input <- tribble( ~USUBJID, ~FAOBJ, ~FATESTCD, ~FATPTREF, ~AVAL, ~FATPT, ~PARAMCD, "ABC101", "REDNESS", "DIAMETER", "VACC 1", 10, "DAY 1", "DIARE", "ABC101", "REDNESS", "DIAMETER", "VACC 1", 7, "DAY 2", "DIARE", "ABC101", "REDNESS", "DIAMETER", "VACC 2", 3, "DAY 1", "DIARE", "ABC101", "REDNESS", "DIAMETER", "VACC 2", 8, "DAY 2", "DIARE", "ABC101", "FATIQUE", "SEV", "VACC 1", 1, "DAY 1", "SEVFAT", "ABC101", "FATIQUE", "SEV", "VACC 1", 1, "DAY 2", "SEVFAT", "ABC101", "FATIQUE", "SEV", "VACC 2", 2, "DAY 1", "SEVFAT", "ABC101", "FATIQUE", "SEV", "VACC 2", 3, "DAY 2", "SEVFAT" ) derive_vars_max_flag( dataset = input, flag1 = "ANL01FL", flag2 = "ANL02FL" ) derive_vars_max_flag( dataset = input, flag1 = NULL, flag2 = "ANL02FL" ) derive_vars_max_flag( dataset = input, flag1 = "ANL01FL", flag2 = NULL )
Add new variables to the input dataset based on variables from another dataset.
The variables to be added to the output dataset will be based on input variables
passed on ex_vars
argument.
derive_vars_merged_vaccine( dataset, dataset_ex, by_vars_sys, by_vars_adms, ex_vars )
derive_vars_merged_vaccine( dataset, dataset_ex, by_vars_sys, by_vars_adms, ex_vars )
dataset |
Input dataset which should have been combined with the supplementary(if exists). The variables specified by the |
dataset_ex |
The variables specified by the |
by_vars_sys |
Grouping variables for systemic events. |
by_vars_adms |
Grouping variables for administration site events. |
ex_vars |
Variables to be added to the output dataset from EX dataset |
The input dataset will be merged with EX
dataset for "ADMINISTRATION SITE" and
"SYSTEMIC" categories separately and these datasets will be bound together as
the final output dataset.
This function is intended to add only EX
variables to the input dataset and user
is expected to handle if any pre-processing is required.
Only the variables passed to the ex_vars
will be added in the output dataset
If the input dataset has multiple vaccination for a subject at same visit
then this function will not merge ex dataset and will return the dataset
.
The dataset with variables added from the EX dataset.
Vikram S
Other der_var:
derive_var_aval_adis()
,
derive_vars_crit()
,
derive_vars_event_flag()
,
derive_vars_max_flag()
,
derive_vars_params()
,
derive_vars_vaxdt()
library(tibble) library(admiral) library(dplyr) library(pharmaversesdtm) derive_vars_merged_vaccine( dataset = face_vaccine, dataset_ex = ex_vaccine, by_vars_sys = exprs(USUBJID, FATPTREF = EXLNKGRP), by_vars_adms = exprs(USUBJID, FATPTREF = EXLNKGRP, FALOC = EXLOC, FALAT = EXLAT), ex_vars = exprs(EXTRT, EXDOSE, EXDOSU, EXSTDTC, EXENDTC) ) %>% select(USUBJID, FATPTREF, FALOC, FALAT, EXTRT, EXDOSE, EXDOSU, EXSTDTC, EXENDTC) %>% head(10) derive_vars_merged_vaccine( dataset = face_vaccine, dataset_ex = ex_vaccine, by_vars_sys = exprs(USUBJID, FATPTREF = EXLNKGRP), by_vars_adms = exprs(USUBJID, FATPTREF = EXLNKGRP, FALOC = EXLOC, FALAT = EXLAT), ex_vars = exprs(EXTRT, EXDOSE, EXDOSU, EXSTDTC, EXENDTC) )
library(tibble) library(admiral) library(dplyr) library(pharmaversesdtm) derive_vars_merged_vaccine( dataset = face_vaccine, dataset_ex = ex_vaccine, by_vars_sys = exprs(USUBJID, FATPTREF = EXLNKGRP), by_vars_adms = exprs(USUBJID, FATPTREF = EXLNKGRP, FALOC = EXLOC, FALAT = EXLAT), ex_vars = exprs(EXTRT, EXDOSE, EXDOSU, EXSTDTC, EXENDTC) ) %>% select(USUBJID, FATPTREF, FALOC, FALAT, EXTRT, EXDOSE, EXDOSU, EXSTDTC, EXENDTC) %>% head(10) derive_vars_merged_vaccine( dataset = face_vaccine, dataset_ex = ex_vaccine, by_vars_sys = exprs(USUBJID, FATPTREF = EXLNKGRP), by_vars_adms = exprs(USUBJID, FATPTREF = EXLNKGRP, FALOC = EXLOC, FALAT = EXLAT), ex_vars = exprs(EXTRT, EXDOSE, EXDOSU, EXSTDTC, EXENDTC) )
Creating PARAMCD
from lookup dataset and assigning PARAM
,PARAMN
,PARCAT1
,
PARCAT2
variables
derive_vars_params(dataset, lookup_dataset, merge_vars)
derive_vars_params(dataset, lookup_dataset, merge_vars)
dataset |
Input dataset
Input dataset is expected to have variables |
lookup_dataset |
lookup dataset containing |
merge_vars |
List of Variables need to be merged from lookup dataset |
A lookup dataset is required with PARAMCD
values for every combination
of FATEST
& FAOBJ
.
PARAMCD
PARAMN
PARAMN
PARCAT1
PARCAT2
values can be assigned
from lookup dataset.
if `PARAMN` not assigned in lookup dataset then `PARAMN` is assigned with a unique number for every unique PARAM value. if `PARAM` value not assigned in lookup dataset then `PARAM` value is a combination of `FAOBJ` `FATEST` `FASTRESU` `FALOC` `FADIR` `FALAT` if `PARCAT1` value not assigned in lookup dataset then `PARCAT1` is assigned as `FACAT` if `PARCAT2` value not assigned in lookup dataset then `PARCAT2` is assigned as `FASCAT`
The output dataset contains all observations and variables of the
input dataset along with PARAM
,PARAMCD
,PARCAT1
,PARCAT2
,PARAMN
Dhivya Kanagaraj
Other der_var:
derive_var_aval_adis()
,
derive_vars_crit()
,
derive_vars_event_flag()
,
derive_vars_max_flag()
,
derive_vars_merged_vaccine()
,
derive_vars_vaxdt()
library(admiral) library(tibble) library(dplyr) lookup_dataset <- tibble::tribble( ~FATESTCD, ~PARAMCD, ~PARAMN, ~FATEST, ~FAOBJ, "SEV", "SEVREDN", 1, "Severity", "Redness", "DIAMETER", "DIARE", 2, "Diameter", "Redness", "MAXDIAM", "MDIRE", 3, "Maximum Diameter cm", "Redness", "MAXTEMP", "MAXTEMP", 4, "Maximum Temperature", "Fever", "OCCUR", "OCFEVER", 5, "Occurrence Indicator", "Fever", "OCCUR", "OCERYTH", 6, "Occurrence Indicator", "Erythema", "SEV", "SEVPAIN", 7, "Severity", "Pain at Injection site", "OCCUR", "OCPAIN", 8, "Occurrence Indicator", "Pain at Injection site", "OCCUR", "OCSWEL", 9, "Occurrence Indicator", "Swelling" ) input <- tibble::tribble( ~USUBJID, ~FACAT, ~FASCAT, ~FATESTCD, ~FAOBJ, ~FATEST, ~FALOC, ~FALAT, "ABC101", "REACTO", "ADMIN", "SEV", "Redness", "Severity", "ARM", "LEFT", "ABC101", "REACTO", "ADMIN", "DIAMETER", "Redness", "Diameter", "ARM", "RIGHT", "ABC101", "REACTO", "ADMIN", "MAXDIAM", "Redness", "Maximum Diameter", NA, NA, "ABC101", "REACTO", "SYSTEMIC", "MAXTEMP", "Fever", "Maximum Temp", NA, NA, "ABC101", "REACTO", "SYSTEMIC", "OCCUR", "Fever", "Occurrence", NA, NA, "ABC101", "REACTO", "ADMIN", "OCCUR", "Erythema", "Occurrence", NA, NA, "ABC101", "REACTO", "ADMIN", "SEV", "Swelling", "Severity", NA, NA, "ABC101", "REACTO", "ADMIN", "OCCUR", "Swelling", "Occurrence", NA, NA, "ABC101", "REACTO", "ADMIN", "OCCUR", "Swelling", "Occurrence", NA, NA ) derive_vars_params( dataset = input, lookup_dataset = lookup_dataset, merge_vars = exprs(PARAMCD, PARAMN) )
library(admiral) library(tibble) library(dplyr) lookup_dataset <- tibble::tribble( ~FATESTCD, ~PARAMCD, ~PARAMN, ~FATEST, ~FAOBJ, "SEV", "SEVREDN", 1, "Severity", "Redness", "DIAMETER", "DIARE", 2, "Diameter", "Redness", "MAXDIAM", "MDIRE", 3, "Maximum Diameter cm", "Redness", "MAXTEMP", "MAXTEMP", 4, "Maximum Temperature", "Fever", "OCCUR", "OCFEVER", 5, "Occurrence Indicator", "Fever", "OCCUR", "OCERYTH", 6, "Occurrence Indicator", "Erythema", "SEV", "SEVPAIN", 7, "Severity", "Pain at Injection site", "OCCUR", "OCPAIN", 8, "Occurrence Indicator", "Pain at Injection site", "OCCUR", "OCSWEL", 9, "Occurrence Indicator", "Swelling" ) input <- tibble::tribble( ~USUBJID, ~FACAT, ~FASCAT, ~FATESTCD, ~FAOBJ, ~FATEST, ~FALOC, ~FALAT, "ABC101", "REACTO", "ADMIN", "SEV", "Redness", "Severity", "ARM", "LEFT", "ABC101", "REACTO", "ADMIN", "DIAMETER", "Redness", "Diameter", "ARM", "RIGHT", "ABC101", "REACTO", "ADMIN", "MAXDIAM", "Redness", "Maximum Diameter", NA, NA, "ABC101", "REACTO", "SYSTEMIC", "MAXTEMP", "Fever", "Maximum Temp", NA, NA, "ABC101", "REACTO", "SYSTEMIC", "OCCUR", "Fever", "Occurrence", NA, NA, "ABC101", "REACTO", "ADMIN", "OCCUR", "Erythema", "Occurrence", NA, NA, "ABC101", "REACTO", "ADMIN", "SEV", "Swelling", "Severity", NA, NA, "ABC101", "REACTO", "ADMIN", "OCCUR", "Swelling", "Occurrence", NA, NA, "ABC101", "REACTO", "ADMIN", "OCCUR", "Swelling", "Occurrence", NA, NA ) derive_vars_params( dataset = input, lookup_dataset = lookup_dataset, merge_vars = exprs(PARAMCD, PARAMN) )
Creates vaccination date variables from EX
domain. A date variable will be
created for each vaccination taking values from the variable EXSTDTC
.
derive_vars_vaxdt(dataset, dataset_adsl, by_vars, order)
derive_vars_vaxdt(dataset, dataset_adsl, by_vars, order)
dataset |
Input dataset The variables specified by the |
dataset_adsl |
Input adsl dataset The vaccination date variables created will be merged with this adsl dataset. |
by_vars |
Grouping variables. The variables to be grouped to filter the first observation within each by group. |
order |
Sorting variables. The variables order to be specified either in ascending or descending order. By default ascending order will be applicable. |
If there are multiple vaccinations for a visit per subject,warning will be
provided and only first observation will be filtered based on the variable
order specified on the order
argument. In this case, user need to select
the by_vars
appropriately.
The number of variables created will be based on the number of vaccinations per subject per visit.
The adsl dataset with vaccination date variables added to it.
Vikram S
Other der_var:
derive_var_aval_adis()
,
derive_vars_crit()
,
derive_vars_event_flag()
,
derive_vars_max_flag()
,
derive_vars_merged_vaccine()
,
derive_vars_params()
library(tibble) library(admiral) library(dplyr) input <- tribble( ~USUBJID, ~EXSTDTC, ~VISITNUM, ~EXTRT, ~EXLNKGRP, ~VISIT, "A001", "2015-01-10", 1, "DRUG A", "VAC 1", "VISIT 1", "A001", "2015-01-11", 2, "DRUG A", "VAC 2", "VISIT 2", "A001", "2015-01-12", 3, "DRUG B", "VAC 3", "VISIT 3", "A002", "2015-01-13", 1, "DRUG B", "VAC 1", "VISIT 1", "A002", "2015-01-14", 2, "DRUG C", "VAC 2", "VISIT 2" ) adsl <- tribble( ~USUBJID, ~SEX, ~AGE, "A001", "MALE", 23, "A002", "FEMALE", 26, ) derive_vars_vaxdt( dataset = input, dataset_adsl = adsl, by_vars = exprs(USUBJID, VISITNUM), order = exprs(USUBJID, VISITNUM, VISIT, EXSTDTC) )
library(tibble) library(admiral) library(dplyr) input <- tribble( ~USUBJID, ~EXSTDTC, ~VISITNUM, ~EXTRT, ~EXLNKGRP, ~VISIT, "A001", "2015-01-10", 1, "DRUG A", "VAC 1", "VISIT 1", "A001", "2015-01-11", 2, "DRUG A", "VAC 2", "VISIT 2", "A001", "2015-01-12", 3, "DRUG B", "VAC 3", "VISIT 3", "A002", "2015-01-13", 1, "DRUG B", "VAC 1", "VISIT 1", "A002", "2015-01-14", 2, "DRUG C", "VAC 2", "VISIT 2" ) adsl <- tribble( ~USUBJID, ~SEX, ~AGE, "A001", "MALE", 23, "A002", "FEMALE", 26, ) derive_vars_vaxdt( dataset = input, dataset_adsl = adsl, by_vars = exprs(USUBJID, VISITNUM), order = exprs(USUBJID, VISITNUM, VISIT, EXSTDTC) )
To Flag the maximum records depends on the grouping variables in a flag variable.
max_flag(dataset, by_vars, fl)
max_flag(dataset, by_vars, fl)
dataset |
Input dataset |
by_vars |
By variables which goes to group by, to create the flag. Pass the variables inside the exprs(). |
fl |
Flag variable name, Pass it as string. |
Data frame with flag variable which is flagged for the maximum value records depending on
the variables passed in by_vars
by user.
Dhivya Kanagaraj
library(tibble) library(admiral) input <- tribble( ~USUBJID, ~FAOBJ, ~FATESTCD, ~FATPTREF, ~AVAL, ~FATPT, ~PARAMCD, "ABC101", "REDNESS", "DIAMETER", "VACC 1", 10, "DAY 1", "DIARE", "ABC101", "REDNESS", "DIAMETER", "VACC 1", 7, "DAY 2", "DIARE", "ABC101", "REDNESS", "DIAMETER", "VACC 2", 3, "DAY 1", "DIARE", "ABC101", "REDNESS", "DIAMETER", "VACC 2", 8, "DAY 2", "DIARE", "ABC101", "FATIQUE", "SEV", "VACC 1", 1, "DAY 1", "SEVFAT", "ABC101", "FATIQUE", "SEV", "VACC 1", 1, "DAY 2", "SEVFAT", "ABC101", "FATIQUE", "SEV", "VACC 2", 2, "DAY 1", "SEVFAT", "ABC101", "FATIQUE", "SEV", "VACC 2", 3, "DAY 2", "SEVFAT" ) max_flag( dataset = input, by_vars = exprs(USUBJID, FAOBJ, FATPTREF, PARAMCD), fl = "ANL01FL" )
library(tibble) library(admiral) input <- tribble( ~USUBJID, ~FAOBJ, ~FATESTCD, ~FATPTREF, ~AVAL, ~FATPT, ~PARAMCD, "ABC101", "REDNESS", "DIAMETER", "VACC 1", 10, "DAY 1", "DIARE", "ABC101", "REDNESS", "DIAMETER", "VACC 1", 7, "DAY 2", "DIARE", "ABC101", "REDNESS", "DIAMETER", "VACC 2", 3, "DAY 1", "DIARE", "ABC101", "REDNESS", "DIAMETER", "VACC 2", 8, "DAY 2", "DIARE", "ABC101", "FATIQUE", "SEV", "VACC 1", 1, "DAY 1", "SEVFAT", "ABC101", "FATIQUE", "SEV", "VACC 1", 1, "DAY 2", "SEVFAT", "ABC101", "FATIQUE", "SEV", "VACC 2", 2, "DAY 1", "SEVFAT", "ABC101", "FATIQUE", "SEV", "VACC 2", 3, "DAY 2", "SEVFAT" ) max_flag( dataset = input, by_vars = exprs(USUBJID, FAOBJ, FATPTREF, PARAMCD), fl = "ANL01FL" )
This is used to do post processing for ADaM reactogenicity dataset, for the derived
SDTM level records, the corresponding values in FA variables will be NA
.
post_process_reacto( dataset, filter_dataset = FATESTCD %in% c("MAXDIAM", "MAXSEV", "MAXTEMP") | (FATESTCD == "OCCUR" & FAOBJ == "FEVER") )
post_process_reacto( dataset, filter_dataset = FATESTCD %in% c("MAXDIAM", "MAXSEV", "MAXTEMP") | (FATESTCD == "OCCUR" & FAOBJ == "FEVER") )
dataset |
Input dataset |
filter_dataset |
Filter condition Conversion of records in FA variables to NA depends on this condition. |
The input dataframe with NA
values in FA variables where the SDTM records modified for
ADaM derivation purpose.
Arjun Rubalingam
library(dplyr) library(admiral) library(tibble) input <- tribble( ~USUBJID, ~FAOBJ, ~FALAT, ~FACAT, ~FASCAT, ~FATPT, ~FATESTCD, ~PARAMCD, ~AVAL, "ABC-1001", "FEVER", NA, "REACTO", "SYS", "DAY 1", "MAXTEMP", "MAXTEMP", 39.4, "ABC-1001", "VOMITING", NA, "REACTO", "SYS", "DAY 4", "MAXSEV", "MAXVOMIT", 3, "ABC-1001", "SWELLING", "LEFT", "REACTO", "ADMIN", "DAY 1", "MAXSEV", "MAXSWEL", 3, "ABC-1001", "REDNESS", "LEFT", "REACTO", "ADMIN", "DAY 2", "DIAMATER", "DIARE", 10.3, "ABC-1001", "FEVER", "LEFT", "REACTO", "SYS", "DAY 2", "OCCUR", "OCCFEV", NA ) post_process_reacto( dataset = input, filter_dataset = FATESTCD %in% c("MAXSEV", "MAXTEMP") | (FATESTCD == "OCCUR" & FAOBJ == "FEVER") )
library(dplyr) library(admiral) library(tibble) input <- tribble( ~USUBJID, ~FAOBJ, ~FALAT, ~FACAT, ~FASCAT, ~FATPT, ~FATESTCD, ~PARAMCD, ~AVAL, "ABC-1001", "FEVER", NA, "REACTO", "SYS", "DAY 1", "MAXTEMP", "MAXTEMP", 39.4, "ABC-1001", "VOMITING", NA, "REACTO", "SYS", "DAY 4", "MAXSEV", "MAXVOMIT", 3, "ABC-1001", "SWELLING", "LEFT", "REACTO", "ADMIN", "DAY 1", "MAXSEV", "MAXSWEL", 3, "ABC-1001", "REDNESS", "LEFT", "REACTO", "ADMIN", "DAY 2", "DIAMATER", "DIARE", 10.3, "ABC-1001", "FEVER", "LEFT", "REACTO", "SYS", "DAY 2", "OCCUR", "OCCFEV", NA ) post_process_reacto( dataset = input, filter_dataset = FATESTCD %in% c("MAXSEV", "MAXTEMP") | (FATESTCD == "OCCUR" & FAOBJ == "FEVER") )