Package: RDO (via r-universe)

October 13, 2024

Title Reproducible Data Objects
Version 0.1.0

Description A Reproducible Data Object (RDO) encapsulates both data
and R code needed to reproduce those data. Each RDO can have
other RDOs as dependencies. RDOs can be composed into complex
tree hierarchies. Interacting with an RDO tree is similar to
interacting with a single RDO. You can (re)run the code and
refresh the cache, check status, validate if the code still
gives the same cached data, clear data cache, access code and
data cache of any of the dependencies. RDOs can be cloned and
code of cloned dependencies can be modified.

License MIT + file LICENSE
URL https://github.com/openpharma/RDO#readme

BugReports https://github.com/openpharma/RDO/issues
Encoding UTF-8

LazyData true

Imports purrr, data.table

Suggests visNetwork, testthat, knitr, rmarkdown
RoxygenNote 7.0.2

VignetteBuilder knitr

Repository https://pharmaverse.r-universe.dev

RemoteUrl https://github.com/openpharma/RDO
RemoteRef HEAD

RemoteSha 19aed10f427371c30db3f890adee127923c1134e

Contents

Index

https://github.com/openpharma/RDO#readme
https://github.com/openpharma/RDO/issues

RDO

RDO

RDO (Reproducible Data Object)

Description

Create and interact with Reproducible Data Objects.

Methods

Public methods:

RDOS$print()

RDO$new()
RDO$get_status()
RDO$get_name()
RDO$has_dependencies()
RDO$add_dependencies()
RDO$get_dependencies()
RDO$get_dependency_register ()
RDO$plot_dependencies()
RDO$get_code()
RDO$print_code()
RDO$run()
RDO$is_validated()
RDO$invalidate()
RDO$validate()
RDO$1lock ()

RDO$unlock()
RDO$is_locked()
RDO$prune_cache()
RDO$prune_dependencies()
RDO$clone()

Method print(): Default print method of current RDO status

Usage:
RDO$print(...)

Arguments:

. Other params for print function.

Method new(): Creating a new RDO object,

Usage:

RDO$new(name, dependencies = list())

Arguments:

RDO

name Unique name of the object.
dependencies An RDO object or a list of RDO objects.

Returns: A new 'RDO’ object.

Method get_status(): Getting current status.

Usage:
RDO$get_status()

Returns: A list.

Method get_name(): Getting object name.

Usage:
RDO$get_name ()

Returns: A character with object name.

Method has_dependencies(): Checking if object has dependencies.

Usage:
RDO$has_dependencies()

Returns: TRUE if has or FALSE if not.

Method add_dependencies(): Adding new or update existing RDO dependencies.

Usage:
RDO$add_dependencies(dependencies = list())

Arguments:
dependencies An RDO object or a list of RDO objects.

Returns: The RDO object (self) returned invisibly.

Method get_dependencies(): Getting dependencies of the object.

Usage:
RDO$get_dependencies(deep = FALSE)

Arguments:

deep A logical. Should the function return only direct dependencies (FALSE) or also deep
indirect dependencies (dependencies of dependencies). Default is FALSE.

Returns: A named list of RDO dependencies with unique names.
Method get_dependency_register(): Getting dependency register showing which RDO is a
direct parent for other RDO dependencies.

Usage:
RDO$get_dependency_register()

Returns: A data.frame.

Method plot_dependencies(): Plotting the tree of RDO dependencies. Needs visNetwork
package for plotting.

Usage:

RDO

RDO$plot_dependencies()

Method get_code(): Getting reproducible R code.

Usage:
RDO$get_code(deep = FALSE)

Arguments:

deep A logical. Should the function return only code for this particular RDO (FALSE) or also
from all dependencies. Default is FALSE.

Returns: An R named expression.

Method print_code(): Printing reproducible R code.

Usage:
RDO$print_code(deep = FALSE, verbose = Sys.getenv("RDO_VERBOSE"))

Arguments:

deep A logical. Should the function return only code for this particular RDO (FALSE) or also
from all dependencies. Default is FALSE.

verbose A logical. Should the messages be sent to console. If the param is not set, it is read
from an environmental variable RDO_VERBOSE. If the variable is not set, than the default is
TRUE.

Returns: A character. Reproducible R code returned invisibly.

Method run(): Running reproducible R code.

Usage:
RDO$run(deep = FALSE, cache = TRUE, verbose = Sys.getenv("RDO_VERBOSE"))

Arguments:

deep A logical. Should the function run only code for this particular RDO (FALSE) or should
it run also dependencies’ code if they are not validated. The function is lazy and it checks
if all deep dependencies are validated first. If so, there is no need to rerun their code again.
Default is FALSE.

cache A logical. Should the result of code evaluation be cached inside an RDO object. Default
is TRUE.

verbose A logical. Should the messages be sent to console. If the param is not set, it is read
from an environmental variable RDO_VERBOSE. If the variable is not set, than the default is
TRUE.

Returns: The RDO object (self) returned invisibly.
Method is_validated(): Checking if RDO is validated. A RDO is validated when the result
of running reproducible R code saved inside the RDO is the same as data cached inside the RDO.

Usage:
RDO$is_validated(deep = FALSE, verbose = Sys.getenv("RDO_VERBOSE"))

Arguments:

deep A logical. Should the function validate only this particular RDO (FALSE) or should it
validate also all deep dependencies (TRUE). Default is FALSE.

RDO 5

verbose A logical. Should the messages be sent to console. If the param is not set, it is read
from an environmental variable RDO_VERBOSE. If the variable is not set, than the default is
TRUE.

Returns: A logical. TRUE if RDO is validated, FALSE if not.

Method invalidate(): Invalidating the RDO explicitly by setting the ’is_validated’ status to
"FALSE’.

Usage:

RDO$invalidate(deep = FALSE, verbose = Sys.getenv("RDO_VERBOSE"))

Arguments:

deep A logical. Should the function invalidate only this particular RDO (FALSE) or should it
invalidate also all deep dependencies (TRUE). Default is FALSE.

verbose A logical. Should the messages be sent to console. If the param is not set, it is read
from an environmental variable RDO_VERBOSE. If the variable is not set, than the default is
TRUE.

Returns: The RDO object (self) returned invisibly.

Method validate(): Validating the RDO explicitly by running deep reproducible R code and
checking if the result is the same as cached data inside the RDO.

Usage:

RDO$validate(deep = FALSE, verbose = Sys.getenv("RDO_VERBOSE"))

Arguments:

deep A logical. Should the function validate only this particular RDO (FALSE) or should it
validate also all deep dependencies (TRUE). Default is FALSE.

verbose A logical. Should the messages be sent to console. If the param is not set, it is read
from an environmental variable RDO_VERBOSE. If the variable is not set, than the default is
TRUE.

Returns: The RDO object (self) returned invisibly.

Method lock(): Locking the RDO object. When RDO object is locked you cannot change the
R code and data cache saved inside the object.

Usage:

RDO$lock(deep = FALSE, verbose = Sys.getenv("RDO_VERBOSE"))

Arguments:

deep A logical. Should the function lock only this particular RDO (FALSE) or should it lock
also all deep dependencies (TRUE). Default is FALSE.

verbose A logical. Should the messages be sent to console. If the param is not set, it is read
from an environmental variable RDO_VERBOSE. If the variable is not set, than the default is
TRUE.

Returns: The RDO object (self) returned invisibly.

Method unlock(): Unlocking previously locked RDO object.

Usage:
RDO$unlock(deep = FALSE, verbose = Sys.getenv("RDO_VERBOSE"))

RDO

Arguments:

deep A logical. Should the function unlock only this particular RDO (FALSE) or should it
unlock also all deep dependencies (TRUE). Default is FALSE.

verbose A logical. Should the messages be sent to console. If the param is not set, it is read
from an environmental variable RDO_VERBOSE. If the variable is not set, than the default is
TRUE.

Returns: The RDO object (self) returned invisibly.

Method is_locked(): Checking if an RDO object is locked.

Usage:
RDO$is_locked(deep = FALSE, verbose = Sys.getenv("RDO_VERBOSE"))

Arguments:
deep Alogical. Should the function check only this particular RDO (FALSE) or should it check
also all deep dependencies (TRUE). Default is FALSE.

verbose A logical. Should the messages be sent to console. If the param is not set, it is read
from an environmental variable RDO_VERBOSE. If the variable is not set, than the default is
TRUE.

Returns: A logical. TRUE if RDO is locked, FALSE if not.

Method prune_cache(): Pruning (clearing) RDO data cache by setting cache to NULL. It can
save memory when we no longer need to keep cache in dependencies.

Usage:
RDO$prune_cache(deep = FALSE, verbose = Sys.getenv("RDO_VERBOSE"))

Arguments:

deep A logical. Should the function prune cache of only this particular RDO (FALSE) or
should it prune cache also of deep dependencies (TRUE). If an RDO is locked the cache in
this particular RDO is not pruned. Default is FALSE.

verbose A logical. Should the messages be sent to console. If the param is not set, it is read
from an environmental variable RDO_VERBOSE. If the variable is not set, than the default is
TRUE.

Returns: The RDO object (self) returned invisibly.
Method prune_dependencies(): Pruning RDO dependencies by ensuring that RDO objects in

deep dependencies with the same name point to the same RDO objects. This type of pruning may
be useful after deep clonning of complex RDO tree with duplicated dependencies.

Usage:
RDO$prune_dependencies(verbose = Sys.getenv("RDO_VERBOSE"))

Arguments:

verbose A logical. Should the messages be sent to console. If the param is not set, it is read
from an environmental variable RDO_VERBOSE. If the variable is not set, than the default is
TRUE.

Returns: The RDO object (self) returned invisibly.

Method clone(): The objects of this class are cloneable with this method.

RDO

Usage:

RDO$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

Index

RDO, 2

	RDO
	Index

